Skip to main content
Log in

Symmetric hyperbolic systems for a large class of fields in arbitrary dimension

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Symmetric hyperbolic systems of equations are explicitly constructed for a general class of tensor fields by considering their structure as r-fold forms. The hyperbolizations depend on 2r−1 arbitrary timelike vectors. The importance of the so-called “superenergy” tensors, which provide the necessary symmetric positive matrices, is emphasized and made explicit. Thereby, a unified treatment of many physical systems is achieved, as well as of the sometimes called “higher order” systems. The characteristics of these symmetric hyperbolic systems are always physical, and directly related to the null directions of the superenergy tensor, which are in particular principal null directions of the tensor field solutions. Generic energy estimates and inequalities are presented too. Examples are included, in particular a mixed gravitational-scalar field system at the level of the Bianchi equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson A., Choquet-Bruhat Y. and York Jr.J.W. (1997). Einstein-Bianchi hyperbolic system for Relativity. Topol. Meth. Nonlinear Anal. 10: 353–374

    MATH  MathSciNet  Google Scholar 

  2. Beig, R.: Concepts of hyperbolicity and relativistic continuum mechanics. In: Frauendiener, J., Giulini, D.J.W., Perlick, V. (eds.) Analytical and Numerical Approaches to Mathematical Relativity, Lect. Notes Phys. vol. 692, pp. 101–116. Springer, Berlin (2006). For a related online version see http://xxx.lanl.gov/abs/gr-qc/0411092

  3. Bel L. (1958). Definition d’une densité d’énergie et d’un état de radiation totale généralisée. C.R. Acad. Sci. Paris 246: 3015–3018

    MATH  MathSciNet  Google Scholar 

  4. Bel L. (1958). Sur la radiation gravitationnelle. C.R. Acad Sci. Paris 247: 1094–1096

    MATH  MathSciNet  Google Scholar 

  5. Bel L. (1959). Introduction d’un tenseur du quatrième ordre. C.R. Acad Sci. Paris 248: 1297–1300

    MATH  MathSciNet  Google Scholar 

  6. Bergqvist G. and Senovilla J.M.M. (1999). On the causal propagation of fields. Class.Quantum Grav. 16: L55–L61

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bergqvist G. and Senovilla J.M.M. (2001). Null cone preserving maps, causal tensors and algebraic Rainich theory. Class. Quantum Grav. 18: 5299–5325

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Bona C., Massó J., Seidel E. and Stela J. (1995). A new formalism for numerical relativity. Phys. Rev. Lett. 75: 600–603

    Article  ADS  Google Scholar 

  9. Bonilla M.A.G. (1998). Symmetric hyperbolic systems for Bianchi equations. Class. Quantum Grav. 15: 2001–2005

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Bonilla M.A.G. and Senovilla J.M.M. (1997). Very simple proof of the causal propagation of gravity in vacuum. Phys. Rev. Lett. 78: 783–786

    Article  ADS  Google Scholar 

  11. Bonilla M.A.G. and Senovilla J.M.M. (1997). Some properties of the Bel and Bel-Robinson tensors. Gen. Rel. Grav. 29: 91–116

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Buchdahl H.A. (1958). On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field. Nuovo Cimento 10: 96–103

    Article  MATH  MathSciNet  Google Scholar 

  13. Buchdahl H.A. (1962). Compatibility of relativistic wave equations in Riemann spaces. Nuovo 25: 486–496

    MATH  MathSciNet  Google Scholar 

  14. Buchdahl H.A. (1982). On the compatibility of relativistic wave equations in Riemann spaces. II. J. Phys. A: Math. Gen. 15: 1–5

    Article  MathSciNet  ADS  Google Scholar 

  15. Buchdahl H.A. (1982). On the compatibility of relativistic wave equations in Riemann spaces. III. J. Phys. A: Math. Gen. 15: 1057–1062

    Article  MathSciNet  ADS  Google Scholar 

  16. Buchdahl H.A. (1984). On the compatibility of relativistic wave equations in Riemann spaces. IV. Class. Quantum Grav. 1: 189–192

    Article  MathSciNet  ADS  Google Scholar 

  17. Buchdahl H.A. (1987). On the compatibility of relativistic wave equations in Riemann spaces. V. Class. Quantum Grav. 4: 1055–1062

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Chevreton M. (1964). Sur le tenseur de superénergie du champ électomagnétique. Nuovo Cimento 34: 901–913

    MATH  MathSciNet  Google Scholar 

  19. Choquet-Bruhat, Y., York, Jr.J.W.: The Cauchy problem. In: Held, A., (ed.) General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 1, pp. 99–172. Plenum, New York (1980)

  20. Choquet-Bruhat, Y., York, Jr.J.W.: Well posed reduced systems for the Einstein equations. C. R. Acad. Sci. Paris 231 (serie I), 1089–1095 (1995). For a related online version see http://xxx.lanl.gov/abs/gr-qc/9606001

  21. Choquet-Bruhat Y. and York Jr.J.W. (2002). Bianchi-Euler system for relativistic fluids and Bel- type energy. C. R. Acad. Sci. Paris 335: 711–716

    MATH  MathSciNet  Google Scholar 

  22. Choquet-Bruhat, Y., York, Jr.J.W.: Einstein–Bianchi system with sources. Preprint: http://xxx. lanl.gov/abs/gr-qc/0511032

  23. Christodoulou D. and Klainerman S. (1993). The global nonlinear stability of the Minkowski space, vol. 41 of Princeton Mathematical Series. Princeton University Press, Princeton

    Google Scholar 

  24. Edgar, S.B., Senovilla J.M.M. (2006). A weighted de Rham operator acting on arbitrary tensor fields and their local potentials. J. Geom. Phys. 56: 2135–2162

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Fischer A. and Marsden J. (1972). The Einstein evolution equations as a first-order symmetric hyperbolic quasilinear system. Commun. Math. Phys. 28: 1–38

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Friedrich H. (1985). On the hyperbolicity of Einstein’s and other gauge field equations. Commun. Math. Phys. 100: 525–543

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Friedrich H. (1996). Hyperbolic reductions of Einstein’s field equations. Class. Quantum Grav. 13: 1451–1469

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Friedrich, H., Rendall, A.D.: The Cauchy problem for the Einstein equations. In: Schmidt, B.G. (ed.) Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, Lect. Notes Phys. vol. 540 pp. 127–224. Springer, Berlin (2000). For a related online version see: http://xxx.lanl.gov/abs/gr-qc/0002074

  29. Friedrichs K.O. (1954). Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7: 345–392

    MATH  MathSciNet  Google Scholar 

  30. García-Parrado A. and Senovilla J.M.M. (2003). Causal symmetries. Class. Quantum Grav. 20: L139–L146

    Article  MATH  ADS  Google Scholar 

  31. García-Parrado A. and Senovilla J.M.M. (2004). General study and basic properties of causal symmetries. Class. Quantum Grav. 21: 661–696

    Article  MATH  ADS  Google Scholar 

  32. Geroch, R.: Partial differential equations of physics. In: Hall, G.S., Pulham J.R. (eds.) Proc. of the 46th Scottish Universities Summer Schools in Physcs. SUSSP Publications, Edinburgh; IOP Publishing London (1996). For a related online version see http://xxx.lanl.gov/abs/gr-qc/9602055

  33. Klainerman S. and Nicolò F. (1999). On local and global aspects of the Cauchy problem in general relativity. Class. Quantum Grav. 16: R73–R157

    Article  MATH  ADS  Google Scholar 

  34. Lichnerowicz A. (1960). Ondes et radiations électromagnétiques et gravitationelles en relativité général. Ann. Mat. Pura Appl. 50: 1–96

    Article  MATH  MathSciNet  Google Scholar 

  35. Penrose R. and Rindler W. (1986). Spinors and spacetime, vols. 1–2. Cambridge University Press, Cambridge

    Google Scholar 

  36. Pozo J.M. and Parra J.M. (2002). Positivity and conservation of superenergy tensors. Class. Quantum Grav. 19: 967–983

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Rendall, A.D.: Theorems on existence and global dynamics for the Einstein equations. Living Rev. Relativity 8 (2005), 6. URL (cited on 2006-07-15): http://www.livingreviews.org/lrr-2005-6

  38. Reula, O.A.: Hyperbolic methods for Einstein’s equations. Living Rev. Relativity 1 (1998), 3. URL (cited on 2006-07-15): http://www.livingreviews.org/lrr-1998-3

  39. Senovilla, J.M.M.: Remarks on superenergy tensors. In: Martín, J., Ruiz, E., Atrio, F., Molina, A. (eds.) Relativity and Gravitation in General: Proceedings of the Spanish Relativity Meeting in Honour of the 65th Birthday of Lluís Bel. World Scientific, Singapore (1999) pp. 175–182. For a related online version see http://xxx.lanl.gov/abs/gr-qc/9901019

  40. Senovilla, J.M.M.: Super-energy tensors. Class. Quantum Grav. 17, 2799–2842 (2000). For a related, longer, online version, see http://xxx.lanl.gov/abs/gr-qc/9906087

  41. Senovilla, J.M.M.: General electric-magnetic decomposition of fields, positivity and Rainich-like conditions. In: Pascual-Sánchez, J.F., Floría, L., San Miguel, A., Vicente F., (eds.) Reference Frames and Gravitomagnetism, pp. 145–164. World Sicentific, Singapore (2001). For a related online version see http://xxx.lanl.gov/abs/gr-qc/0010095

  42. Senovilla J.M.M. (2006). The universal ‘energy’ operator. Class. Quantum Grav. 23, 7143–7147

    Google Scholar 

  43. Stewart J.M. (1998). The Cauchy problem and the initial boundary value problem in numerical relativity. Class. Quantum Grav. 15: 2865–2889

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. M. Senovilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senovilla, J.M.M. Symmetric hyperbolic systems for a large class of fields in arbitrary dimension. Gen Relativ Gravit 39, 361–386 (2007). https://doi.org/10.1007/s10714-006-0390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-006-0390-2

Keywords

Navigation