Skip to main content
Log in

A Comparison Between Three IMUs for Strapdown Airborne Gravimetry

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Strapdown airborne gravimetry relies on the combination of an inertial measuring unit (IMU) and a global navigation satellite system (GNSS) to measure the Earth’s gravity field. Early results with navigation-grade IMUs showed similar accuracies to those obtained with scalar gravimetric systems in the down component. This paper investigates the accuracy of three IMUs used for strapdown airborne gravimetry under the same flight conditions. The three systems considered were navigation-grade IMUs, iXSea AIRINS and iMAR iNAV-FMS, and a tactical-grade Litton LN-200. The data were collected in 2010 over the Island of Madeira, Portugal, in the scope of GEOid over MADeira campaign. The coordinates and orientation of the aircraft were computed using an extended Kalman filter based on the inertial navigation approach. GNSS position and velocity observations were used to update the filter, and the gravity disturbance was considered to be a stochastic process and was part of the state vector. A new crossover point-based serial tuning was introduced to deal with the uncertainty of choosing the filter’s a priori information. The results show that with the iXSea accuracies of 2.1 and 1.6 mGal can be obtained for 1.7 and 5.0 km of spatial resolution (half-wavelength), respectively. iMAR’s results were significantly affected by a nonlinear drift, which led to lower accuracies of 4.1–5.5 mGal. Remarkably, Litton showed very consistent results and achieved an accuracy of about 4.5 mGal at 5 km of spatial resolution (half-wavelength).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastos L, Tomé P, Cunha T, Fernandes MJ, Cunha S (2002) Gravity anomalies from airborne measurements: experiments using a low cost IMU device. In: Sideris M (ed) Gravity, geoid and geodynamics, 2000, international association of geodesy symposia, vol 123. Springer, Berlin, pp 253–258. doi:10.1007/978-3-662-04827-6_42

    Chapter  Google Scholar 

  • Bos M, Deurloo R, Bastos L, Magalhães A (2011) A new local geoid for Madeira using airborne gravimetry. In: AGU Fall Meeting Abstracts, vol 1. San Francisco, p 880

  • Bruton A (2000) Improving the accuracy and resolution of SINS/DPGS airborne gravimetry. Ph.D. thesis, The University of Calgary

  • Catalão J, Sevilla MJ (2009) Mapping the geoid for Iberia and the Macaronesian Islands using multi-sensor gravity data and the GRACE geopotential model. J Geodyn 48:6–15. doi:10.1016/j.jog.2009.03.001

    Article  Google Scholar 

  • Deurloo R (2011) Development of a Kalman filter integrating system and measurement models for a low-cost strapdown airborne gravimetry system. Ph.D. thesis, Faculty of Sciences of the University of Porto

  • Deurloo R, Bastos L, Bos M (2012) On the use of UAVs for strapdown airborne gravimetry. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet Earth, international association of geodesy symposia, vol 136. Springer, Berlin, pp 255–261. doi:10.1007/978-3-642-20338-1_31

    Google Scholar 

  • Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi:10.1029/2005RG000183

    Article  Google Scholar 

  • Forsberg R, Olesen A (2010) Airborne gravity field determination. In: Xu G (ed) Sciences of geodesy—I. Springer, Berlin, pp 83–104. doi:10.1007/978-3-642-11741-1_3

    Chapter  Google Scholar 

  • Forsberg R, Hehl K, Bastos L, Giskehaug A, Meyer U (1997) Development of an airborne geoid mapping system for coastal oceanography (AGMASCO). In: Segawa J, Fujimoto H, Okubo S (eds) Gravity, geoid and marine geodesy, international association of geodesy symposia, vol 117. Springer, Berlin, pp 163–170. doi:10.1007/978-3-662-03482-8_24

    Chapter  Google Scholar 

  • Förste C et al (2014) EIGEN-6C4: the latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. In: EGU General Assembly Conference Abstracts, vol 16. Vienna, p 3707

  • Gerlach C, Dorobantu R, Ackermann C, Kjørsvik NS, Boedecker G (2010) Preliminary results of a GPS/INS airborne gravimetry experiment over the German Alps. In: Mertikas SP (ed) Gravity, geoid and Earth observation, international association of geodesy symposia, vol 135. Springer, Berlin, pp 3–9. doi:10.1007/978-3-642-10634-7_1

    Chapter  Google Scholar 

  • Glennie C, Schwarz KP (1999) A comparison and analysis of airborne gravimetry results from two strapdown inertial/DGPS systems. J Geod 73:311–321. doi:10.1007/s001900050248

    Article  Google Scholar 

  • Glennie CL, Schwarz KP, Bruton AM, Forsberg R, Olesen AV, Keller K (2000) A comparison of stable platform and strapdown airborne gravity. J Geod 74:383–389. doi:10.1007/s001900000082

    Article  Google Scholar 

  • Goodall C (2009) Improving usability of low-cost INS/GPS navigation systems using intelligent techniques. Ph.D. thesis, The University of Calgary

  • Groves P (2008) Principles of GNSS, inertial, and multisensor integrated navigation systems, 1st edn. Artech House, Boston

    Google Scholar 

  • Huang Y, Olesen AV, Wu M, Zhang K (2012) SGA-WZ: a new strapdown airborne gravimeter. Sensors 12:9336–9348

    Article  Google Scholar 

  • Jekeli C (1994) Airborne vector gravimetry using precise, position-aided inertial measurement units. Bull Géodésique 69:1–11. doi:10.1007/BF00807986

    Article  Google Scholar 

  • Jekeli C (2001) Inertial navigation systems with geodetic applications. de Gruyter, Berlin, New York. doi:10.1515/9783110800234

    Book  Google Scholar 

  • Kwon JH, Jekeli C (2001) A new approach for airborne vector gravimetry using GPS/INS. J Geod 74:690–700. doi:10.1007/s001900000130

    Article  Google Scholar 

  • Li X (2007) Moving base INS/GPS vector gravimetry on a land vehicle. Ph.D. thesis, The Ohio State University

  • Li X (2011) Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico. J Geod 85:597–605. doi:10.1007/s00190-011-0462-2

    Article  Google Scholar 

  • Li X (2013) Examination of two major approximations used in the scalar airborne gravimetric system: a case study based on the LCR system. J Geod Sci 3:32–39. doi:10.2478/jogs-2013-0004

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Wichmann, Karlsruhe. ISBN: 0856261955

    Google Scholar 

  • Schwarz KP (2006) Simultaneous determination of position and gravity from INS/DGPS. In: Wissenschaftliche Arbeiten der Fachrichtung Geodaesie und Geoinformatik der Universitaet Hannover, vol 258. Hannover, pp 141–148

  • Schwarz KP, Li Z (1997) An introduction to airborne gravimetry and its boundary value problems. In: Sansó F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, lecture notes in Earth sciences, vol 65. Springer, Berlin, pp 312–358. doi:10.1007/BFb0011709

    Chapter  Google Scholar 

  • Senobari MS (2010) New results in airborne vector gravimetry using strapdown INS/DGPS. J Geod 84:277–291. doi:10.1007/s00190-010-0366-6

    Article  Google Scholar 

  • Tomé P (2002) Integration of inertial and satellite navigation systems for aircraft attitude determination. Ph.D. thesis, Faculty of Sciences of the University of Porto

  • Wei M, Schwarz KP (1998) Flight test results from a strapdown airborne gravity system. J Geod 72:323–332. doi:10.1007/s001900050171

    Article  Google Scholar 

Download references

Acknowledgments

The GEOMAD campaign was funded by the European Facility For Airborne Research (EUFAR). The authors would like to express gratitude to the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) for providing iXSea’s data and to the Autonomous Systems Laboratory at Engineering School of Porto Polytechnic (LSA-ISEP) for loaning iMAR. Luís Antunes of Direcção Regional de Informação Geográfica e Ordenamento do Território (DRIGOT) is acknowledged for providing the GPS data from stations on Madeira and Porto Santo. Diogo Ayres-Sampaio was supported by a research grant of the PITVANT project funded by the Portuguese Ministry of Defense. Machiel Bos was funded by national funds through FCT in the scope of the Project UID/GEO/50019/2013 and SFRH/BPD/89923/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Ayres-Sampaio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayres-Sampaio, D., Deurloo, R., Bos, M. et al. A Comparison Between Three IMUs for Strapdown Airborne Gravimetry. Surv Geophys 36, 571–586 (2015). https://doi.org/10.1007/s10712-015-9323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9323-5

Keywords

Navigation