Skip to main content
Log in

The Physics of Lightning

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

An overview of the physics of cloud-to-ground lightning is given, including its initiation, propagation, and attachment to ground. Discharges artificially initiated (triggered) from natural thunderclouds using the rocket-and-wire technique are discussed with a view toward studying properties of natural lightning. Both conventional and runaway breakdown mechanisms of lightning initiation in thunderclouds are reviewed, as is the role of the lower positive charge region in facilitating different types of lightning. New observations of negative-leader stepping and its attachment to ground are compared to similar processes in long laboratory sparks. The mechanism and parameters of compact intracloud lightning discharges that are thought to be the most intense natural producers of HF-VHF (3–300 MHz) radiation on Earth are reviewed. The M-component mode of charge transfer to ground and its difference from the leader/return-stroke mode are discussed. Lightning interaction with the ionosphere and the production of energetic radiation (X-rays and gamma radiation) by cloud-to-ground leaders are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bazelyan EM, Raizer YuP (2000) Lightning physics and lightning protection, 325 p. IOP, Bristol

    Book  Google Scholar 

  • Bazelyan EM, Gorin BN, Levitov VI (1978) Physical and engineering foundations of lightning protection, 223 p. Gidrometeoizdat, Leningrad

    Google Scholar 

  • Beasley WH, Uman MA, Rustan PL (1982) Electric fields preceding cloud-to-ground lightning flashes. J Geophys Res 87:4883–4902

    Article  Google Scholar 

  • Betz HD, Schumann U, Laroche P (eds) (2009) Lightning: principles, instruments and applications. Springer, 691 p

  • Biagi CJ, Jordan DM, Uman MA, Hill JD, Beasley WH, Howard J (2009) High-speed video observations of rocket-and-wire initiated lightning. Geophys Res Lett 36:L15801. doi:10.1029/2009GL038525

    Article  Google Scholar 

  • Biagi CJ, Uman MA, Hill JD, Jordan DM, Rakov VA, Dwyer JR (2010) Observations of stepping mechanisms in a rocket-and-wire triggered lightning flash. J Geophys Res 115:D23215. doi:10.1029/2010JD014616

    Article  Google Scholar 

  • Brook M, Ogawa T (1977) The cloud discharge. In R. Golde (ed) Lightning, vol. 1, Physics of lightning. Academic Press, London, pp. 191–230

  • Chen M, Takagi N, Watanabe T, Wang D, Kawasaki Z-I, Liu X (1999) Spatial and temporal properties of optical radiation produced by stepped leaders. J Geophys Res 104:27573–27584

    Article  Google Scholar 

  • Cooray GV (ed) (2003) The lightning flash, 574 p. The Institution of Electrical Engineers, London

    Google Scholar 

  • Cooray V, Becerra M, Rakov VA (2009) On the electric field at the tip of dart leaders in lightning flashes. J Atmos Solar-Terr Phys 71(12):1397–1404. doi:10.1016/j.jastp.2009.06.002

    Article  Google Scholar 

  • Cooray V, Dwyer JR, Rakov VA, Rahman M (2010) On the mechanism of X-ray production by dart leaders of lightning flashes. J Atmos Solar-Terr Phys 72(11–12):848–855. doi:10.1016/j.jastp.2010.04.006

    Article  Google Scholar 

  • Dwyer JR, Babich LP (2011) Low-energy electron production by relativistic runaway electron avalanches in air. J Geophys Res 116:A09301. doi:10.1029/2011JA016494

    Article  Google Scholar 

  • Dwyer JR, Babich L (2012) Reply to comment by A. V. Gurevich et al. on “Low-energy electron production by relativistic runaway electron avalanches in air”. J Geophys Res 117:A04303. doi:10.1029/2011JA017487

    Article  Google Scholar 

  • Dwyer JR, Schaal M, Rassoul HK, Uman MA, Jordan DM, Hill D (2011) High-speed X-ray images of triggered lightning dart leaders. J Geophys Res 116:D20208. doi:10.1029/2011JD015973

    Article  Google Scholar 

  • Eidelman S et al (2004) Review of particle physics. Phys Lett B 592:1–1109. doi:10.1016/j.physletb.2004.06.001

    Article  Google Scholar 

  • Gorin BN, Levitov VI, Shkilev AV (1976) Some principles of leader discharge of air gaps with a strong non-uniform field. Gas discharges. IEE Conf Publ 143:274–278

    Google Scholar 

  • Griffiths RF, Phelps CT (1976a) The effects of air pressure and water vapour content on the propagation of positive corona streamers, and their implications to lightning initiation. Q J Roy Meteor Soc 102:419–426

    Article  Google Scholar 

  • Griffiths RF, Phelps CT (1976b) A model of lightning initiation arising from positive corona streamer development. J Geophys Res 31:3671–3676

    Article  Google Scholar 

  • Gurevich AV, Zybin KP (2001) Runaway breakdown and electric discharges in thunderstorms. Physics–Uspekhi 44 (11): 1119–1140

    Google Scholar 

  • Gurevich AV, Milikh GM, Roussel-Dupre R (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett A 165:463–468

    Article  Google Scholar 

  • Gurevich AV, Zybin KP, Roussel-Dupre RA (1999) Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers. Phys Lett A 254:79–87

    Article  Google Scholar 

  • Gurevich AV, Duncan LM, Medvedev YuV, Zybin KP (2002) Radio emission due to simultaneous effect of runaway breakdown and extensive atmospheric showers. Phys Lett A 301:320–326

    Article  Google Scholar 

  • Gurevich AV, Duncan LM, Karashtin AN, Zybin KP (2003) Radio emission of lightning initiation. Phys Lett A 312:228–237

    Article  Google Scholar 

  • Gurevich AV, Roussel-Dupre R, Zybin KP, Milikh GM (2012) Comment on “Low-energy electron production by relativistic runway electron avalanches in air” by J. R. Dwyer and L. P. Babich. J Geophys Res 117:A04302. doi:10.1029/2011JA017431

    Article  Google Scholar 

  • Haddad MA, Rakov VA, Cummer SA (2012) New measurements of lightning electric fields in Florida: waveform characteristics, interaction with the ionosphere, and peak current estimates. J Geophys Res 117:D10101. doi:10.1029/2011JD017196

    Article  Google Scholar 

  • Hill JD, Uman MA, Jordan DM (2011) High-speed video observations of a lightning stepped leader. J Geophys Res 116:D16117. doi:10.1029/2011JD015818

    Article  Google Scholar 

  • Inan US, Cummer SA, Marshall RA (2010) A survey of ELF and VLF research of lightning-ionosphere interactions and causative discharges. J Geophys Res 115:A00E36, doi:10.1029/2009JA014775

  • Jayakumar V, Rakov VA, Miki M, Uman MA, Schnetzer GH, Rambo KJ (2006) Estimation of input energy in rocket-triggered lightning. Geophys Res Lett 33:L05702. doi:10.1029/2005GL025141

    Article  Google Scholar 

  • Krehbiel PR, Riousset JA, Pasko VP, Thomas RJ, Rison W, Stanley MA, Edens HE (2008) Upward electrical discharges from thunderstorms. Nature Geosci 1:233–237. doi:10.1038/ngeo162

    Article  Google Scholar 

  • Krider EP, Dawson GA, Uman MA (1968) The peak power and energy dissipation in a single–stroke lightning flash. J Geophys Res 73:3335–3339

    Article  Google Scholar 

  • Larigaldie S, Roussaud A, Jecko B (1992) Mechanisms of high-current pulses in lightning and long-spark. J Appl Phys 72(5):1729–1739

    Article  Google Scholar 

  • Lebedev VB, Feldman GG, Gorin BN, Shcherbakov Yu V, Syssoev VS, Rakov VA, Uman MA, Olsen RC (2007) Test of the image converter camera complex for research of discharges in long air gaps and lightning. In Proceedings of the 13th international conference on atmospheric electricity, Beijing, China, August 13–17, 2007, pp. 509–512

  • Loeb LB (1966) The mechanisms of stepped and dart leaders in cloud-to-ground lightning strokes. J Geophys Res 71:4711–4721

    Article  Google Scholar 

  • Lu G et al (2011) Lightning development associated with two negative gigantic jets. Geophys Res Lett 38:L12801. doi:10.1029/2011GL047662

    Google Scholar 

  • Malan DJ, Schonland BFJ (1951) The electrical processes in the intervals between the strokes of a lightning discharge. Proc Roy Soc (Lond) A206:145–163

    Article  Google Scholar 

  • Mallick S, Rakov VA, Dwyer JR (2012) A study of X-ray emissions from thunderstorms with emphasis on subsequent strokes in natural lightning. J Geophys Res 117:D16107. doi:10.1029/2012JD017555

    Article  Google Scholar 

  • Moss G, Pasko VP, Liu N, Veronis G (2006) Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J Geophys Res 111:A02307. doi:10.1029/2005JA011350

    Article  Google Scholar 

  • Nag A, Rakov VA (2008) Pulse trains characteristic of preliminary breakdown in cloud-to-ground lightning that are not followed by return stroke pulses. J Geophys Res 113:D01102. doi:10.1029/2007JD008489

    Article  Google Scholar 

  • Nag A, Rakov VA (2009) Some inferences on the role of lower positive charge region in facilitating different types of lightning. Geophys Res Lett 36:L05815. doi:10.1029/2008GL036783

    Article  Google Scholar 

  • Nag A, Rakov VA (2010a) Compact intracloud lightning discharges: 1. Mechanism of electromagnetic radiation and modeling. J Geophys Res 115:D20102. doi:10.1029/2010JD014235

    Article  Google Scholar 

  • Nag A, Rakov VA (2010b) Compact intracloud lightning discharges: 2. Estimation of electrical parameters. J Geophys Res 115:D20103. doi:10.1029/2010JD014237

    Article  Google Scholar 

  • Nag A, Rakov VA, Tsalikis D, Cramer JA (2010) On phenomenology of compact intracloud lightning discharges. J Geophys Res 115:D14115. doi:10.1029/2009JD012957

    Article  Google Scholar 

  • Nguyen MD, Michnowski S (1996) On the initiation of lightning discharge in a cloud 2. The lightning initiation on precipitation particles. J Geophys Res 101:26675–26680

    Article  Google Scholar 

  • Paxton AH, Gardner RL, Baker L (1986) Lightning return stroke: a numerical calculation of the optical radiation. Phys Fluids 29:2736–2741

    Article  Google Scholar 

  • Paxton AH, Baker L, Gardner RL (1987) Reply to comments of Hill. Phys Fluids 30:2586–2587

    Article  Google Scholar 

  • Phelps CT (1974) Positive streamers system intensification and its possible role in lightning initiation. J Atmos Terr Phys 36:103–111

    Article  Google Scholar 

  • Pierce ET (1958) Some topics in atmospheric electricity. In: Smith LG (ed) Recent advances in atmospheric electricity. Pergamon, New York, pp 5–16

    Google Scholar 

  • Qie X, Jiang R, Wang C, Yang J, Wang J, Liu D (2011) Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash. J Geophys Res 116:D10102. doi:10.1029/2010JD015331

    Article  Google Scholar 

  • Rakov VA (1998) Some inferences on the propagation mechanisms of dart leaders and return strokes. J Geophys Res 103:1879–1887

    Article  Google Scholar 

  • Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, 687 p

  • Rakov VA (2006) Initiation of lightning in thunderclouds. In Sergeev AM (ed) Topical problems of nonlinear wave physics. Proceedings SPIE, Vol. 5975, pp 362–373

  • Rakov VA, Uman MA (1990) Waveforms of first and subsequent leaders in negative lightning flashes. J Geophys Res 95(D10):16561–16577. doi:10.1029/JD095iD10p16561

    Google Scholar 

  • Rakov VA, Uman MA, Jordan DM, Priore CA III (1990) Ratio of leader to return stroke field change for first and subsequent lightning strokes. J Geophys Res 95(16):579–587

    Google Scholar 

  • Rakov VA, Thottappillil R, Uman MA, Barker PP (1995) Mechanism of the lightning M component. J Geophys Res 100:25701–25710

    Article  Google Scholar 

  • Rakov VA, Uman MA, Rambo KJ, Fernandez MI, Fisher RJ, Schnetzer GH, Thottappillil R, Eybert-Berard A, Berlandis JP, Lalande P, Bonamy A, Laroche P, Bondiou-Clergerie A (1998) New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama. J Geophys Res 103:14117–14130

    Article  Google Scholar 

  • Rao M, Bhattacharya H (1966) Lateral corona currents from the return stroke channel and slow field change after the return stroke in a lightning discharge. J Geophys Res 71:2811–2814

    Article  Google Scholar 

  • Saleh Z, Dwyer J, Howard J, Uman M, Bakhtiari M, Concha D, Stapleton M, Hill D, Biagi C, Rassoul H (2009) Properties of the X-ray emission from rocket-triggered lightning as measured by the Thunderstorm Energetic Radiation Array (TERA). J Geophys Res 114:D17210. doi:10.1029/2008JD011618

    Article  Google Scholar 

  • Solomon R, Schroeder V, Baker MB (2001) Lightning initiation: conventional and runaway-breakdown hypotheses. Q J R Meteorol Soc 127:2683–2704

    Google Scholar 

  • Solomon R, Adamo C, Baker MB (2002) A lightning initiation mechanism: application to a thunderstorm electrification model. C R Physique 3:1325–1333

    Article  Google Scholar 

  • Somu VB, Rakov VA, Haddad MA, Cummer SA (2012) Ionospheric reflection heights for wideband electric fields produced by consecutive return strokes within the same lightning flash, Abstract AE43A-0241, presented at 2012 fall meeting, AGU, San Francisco, Calif., December 3–7, 2012

  • Wang D, Rakov VA, Uman MA, Takagi N, Watanabe T, Crawford DE, Rambo KJ, Schnetzer GH, Fisher RJ, Kawasaki Z-I (1999a) Attachment process in rocket-triggered lightning strokes. J Geophys Res 104:2143–2150

    Article  Google Scholar 

  • Wang D, Takagi N, Watanabe T, Rakov VA, Uman MA (1999b) Observed leader and return-stroke propagation characteristics in the bottom 400 m of a rocket-triggered lightning channel. J Geophys Res 104:14369–14376

    Article  Google Scholar 

  • Yashunin SA, Mareev EA, Rakov VA (2007) Are lightning M components capable of initiating sprites and sprite halos? J Geophys Res 112:D10109. doi:10.1029/2006JD007631

    Article  Google Scholar 

  • Yoshida S, Biagi CJ, Rakov VA, Hill JD, Stapleton MV, Jordan DM, Uman MA, Morimoto T, Ushio T, Kawasaki Z-I, Akita M (2012) The initial stage processes of rocket-and-wire triggered lightning as observed by VHF interferometry. J Geophys Res 117:D09119. doi:10.1029/2012JD017657

    Article  Google Scholar 

Download references

Acknowledgments

This paper is largely based on the Tutorial Lecture given by the author at the Thunderstorm Effects on the Atmosphere–Ionosphere System (TEA – IS) Summer School in Torremolinos, Malaga, Spain, June 17–22, 2012, funded by the European Science Foundation (ESF). The work was also supported in part by the U.S. National Science Foundation and DARPA. Yanan Zhu helped with preparation of the figures. Two anonymous reviewers provided useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Rakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakov, V.A. The Physics of Lightning. Surv Geophys 34, 701–729 (2013). https://doi.org/10.1007/s10712-013-9230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9230-6

Keywords

Navigation