Skip to main content

Lightning, the Science

  • Chapter
  • First Online:
Lightning

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 780))

Abstract

Lightning can be defined as a transient, high-current (typically tens of kiloamperes) electric discharge in air whose length is measured in kilometers. As for any discharge in air, lightning channel is composed of ionized gas, that is, of plasma, whose peak temperature is typically 30,000 K, about five times higher than the temperature of the surface of the Sun. Lightning was present on Earth long before human life evolved and it may even have played a crucial role in the evolution of life on our planet. The global lightning flash rate is some tens to a hundred per second or so. Each year, some 25 million cloud-to-ground lightning discharges occur in the United States, and this number is expected to increase by about 50% due to global warming over the twenty-first century. Lightning initiates many forest fires, and over 30% of all electric power line failures are lightning related. Each commercial aircraft is struck by lightning on average once a year. A lightning strike to an unprotected object or system can be catastrophic. In this chapter, an overview of thunderclouds and their charge structure is given, basic lightning terminology is introduced, and different types of lightning (including the so-called rocket-triggered lightning) are described. For the most common negative cloud-to-ground lightning, main lightning processes are identified and the existing hypotheses of lightning initiation in thunderclouds are reviewed. Additionally, current and electromagnetic field signatures of lightning are characterized and the techniques to measure lightning electric and magnetic fields are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson RB, Eriksson AJ (1980) Lightning parameters for engineering application. Electra 69:65–102

    Google Scholar 

  2. Baba Y, Rakov VA (2007) Electromagnetic fields at the top of a tall building associated with nearby lightning return strokes. IEEE Trans Electromagn Compat 49(3):632–643

    Article  Google Scholar 

  3. Berger K (1972) Mesungen und Resultate der Blitzforschung auf dem Monte San Salvatore bei Lugano. der Jahre 1963–1971. Bull SEV 63:1403–1422

    Google Scholar 

  4. Berger K, Anderson RB, Kroninger H (1975) Parameters of lightning flashes. Electra 80:223–237

    Google Scholar 

  5. Brook M, Armstrong G, Winder RPH, Vonnegut B, Moore CB (1961) Artificial initiation of lightning discharges. J Geophys Res 66:3967–3969

    Article  Google Scholar 

  6. Diendorfer G, Pichler H, Mair M (2009) Some parameters of negative upward-initiated lightning to the Gaisberg tower (2000–2007). IEEE Trans Electromagn Compat 51:443–452

    Article  Google Scholar 

  7. Dwyer JR, Uman MA (2014) The physics of lightning. Phys Rep 534:147–241. https://doi.org/10.1016/j.physrep.2013.09.004

    Article  MathSciNet  Google Scholar 

  8. Fisher RJ, Schnetzer GH, Morris ME (1994) Measured fields and earth potentials at 10 and 20 meters from the base of triggered-lightning channels. In: Proceedings of 22nd international conference on on lightning protection, Budapest, Hungary, Paper R 1c-10, 6 p

    Google Scholar 

  9. Hendry J (1993) Panning for lightning (including comments on the photos by M.A. Uman). Weatherwise 45(6):19

    Google Scholar 

  10. Horii K, Nakano M (1995) Artificially triggered lightning. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 1. CRC Press, Boca Raton, Florida, pp 151–166

    Google Scholar 

  11. Jayaratne ER, Saunders CPR, Hallett J (1983) Laboratory studies of the charging of soft-hail during ice crystal interactions. Q.J.R Meteor Soc 109:609–630

    Article  Google Scholar 

  12. Krehbiel PR (1986) The electrical structure of thunderstorms. In: Krider EP, Roble RG (eds) The Earth’s electrical environment. National Academy Press, Washington, D.C., pp 90–113

    Google Scholar 

  13. Krider EP, Weidman CD, Noggle RC (1977) The electric field produced by lightning stepped leaders. J Geophys Res 82:951–960

    Article  Google Scholar 

  14. Leteinturier C, Hamelin JH, Eybert-Berard A (1991) Submicrosecond characteristics of lightning return-stroke currents. IEEE Trans Electromagn Compat 33:351–357

    Article  Google Scholar 

  15. Lin YT, Uman MA, Tiller JA, Brantley RD, Beasley WH, Krider EP, Weidman CD (1979) Characterization of lightning return stroke electric and magnetic fields from simultaneous two-station measurements. J Geophys Res 84:6307–6314

    Article  Google Scholar 

  16. MacGorman DR, Rust WD (1998) The electrical nature of thunderstorms, 422 p, Oxford Univ. Press, New York

    Google Scholar 

  17. Moore CB, Vonnegut B (1977) The thundercloud. In: Golde RH (ed) Lightning, vol 1, Physics of lightning. Academic Press, New York, pp 51–98

    Google Scholar 

  18. Nag A, Rakov VA (2009) Some inferences on the role of lower positive charge region in facilitating different types of lightning. Geophys Res Lett 36:L05815. https://doi.org/10.1029/2008GL036783

    Article  Google Scholar 

  19. Qie X, Zhang Y (2019) A review of atmospheric electricity research in China from 2011 to 2018. Adv Atmos Sci 36(9):994–1014. https://doi.org/10.1007/s00376-019-8195-x

    Article  Google Scholar 

  20. Rakov VA (2016) Fundamentals of lightning. Cambridge University Press, 257 p

    Google Scholar 

  21. Rakov VA, Thottappillil R, Uman MA (1992) On the empirical formula of Willett et al. relating lightning return-stroke peak current and peak electric field. J Geophys Res 97:11527–11533

    Google Scholar 

  22. Rakov VA, Tran MD (2019) The breakthrough phase of lightning attachment process: From collision of opposite-polarity streamers to hot-channel connection. Electric Power Syst Res 173:122–134. https://doi.org/10.1016/j.epsr.2019.03.018

    Article  Google Scholar 

  23. Rakov VA, Uman MA (2003) Lightning: Physics and effects. Cambridge, New York, 687 p

    Google Scholar 

  24. Rakov VA, Uman MA, Rambo KJ, Fernandez MI, Fisher RJ, Schnetzer GH, Thottappillil R, Eybert-Berard A, Berlandis JP, Lalande P, Bonamy A, Laroche P, Bondiou-Clergerie A (1998) New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama. J Geophys Res 103(14):117–130

    Google Scholar 

  25. Rubinstein M, Bermúdez J-L, Rakov VA, Rachidi F, Hussein A (2012) Compensation of the instrumental decay in measured lightning electric field waveforms. IEEE Trans EMC 54(3):685–688

    Google Scholar 

  26. Schoene J, Uman MA, Rakov VA, Rambo KJ, Jerauld J, Mata CT, Mata AG, Jordan DM, Schnetzer GH (2009) Characterization of return-stroke currents in rocket-triggered lightning. J Geophys Res 114:D03106. https://doi.org/10.1029/2008JD009873

    Article  Google Scholar 

  27. Takami J, Okabe S (2007) Observational results of lightning current on transmission towers. IEEE Trans Power Del 22:547–556

    Article  Google Scholar 

  28. Visacro S, Mesquita CR, De Conti A, Silveira FH (2012) Updated statistics of lightning currents measured at Morro do Cachimbo station. Atmos Res 117:55–63

    Article  Google Scholar 

  29. Uman MA (1987) The Lightning Discharge, 377 p., Orlando, Florida: Academic Press.

    Google Scholar 

  30. Uman MA (2001) The lightning discharge. Dover, Mineola, New York, 377 p

    Google Scholar 

  31. Uman MA, McLain DK (1969) Magnetic field of the lightning return stroke. J Geophys Res 74:6899–6910

    Article  Google Scholar 

  32. Wang D, Rakov VA, Uman MA, Takagi N, Watanabe T, Crawford DE, Rambo KJ, Schnetzer GH, Fisher RJ, Kawasaki Z-I (1999) Attachment process in rocket-triggered lightning strokes. J Geophys Res 104:2143–2150

    Article  Google Scholar 

  33. Willett JC, Bailey JC, Idone VP, Eybert-Berard A, Barret L (1989) Submicrosecond intercomparison of radiation fields and currents in triggered lightning return strokes based on the transmission-line model. J Geophys Res 94(13):275–286

    Google Scholar 

  34. Williams ER (1995) Meteorological aspects of thunderstorms. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol I. CRC Press, Boca Raton, Florida, pp 27–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Rakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Centre for Science and Technology of the Non-aligned and Other Developing Countries (NAM S&T Centre)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakov, V.A. (2021). Lightning, the Science. In: Gomes, C. (eds) Lightning. Lecture Notes in Electrical Engineering, vol 780. Springer, Singapore. https://doi.org/10.1007/978-981-16-3440-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3440-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3439-0

  • Online ISBN: 978-981-16-3440-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics