Skip to main content
Log in

Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper, we study the asymptotic behavior of Teichmüller geodesic rays in the Gardiner–Masur compactification. We will observe that any Teichmüller geodesic ray converges in the Gardiner–Masur compactification. Therefore, we get a mapping from the space of projective measured foliations to the Gardiner–Masur boundary by assigning the limits of associated Teichmüller rays. We will show that this mapping is injective but is neither surjective nor continuous. We also discuss the set of points where this mapping is bicontinuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L.V.: Lectures on Quasiconformal Mappings, Van Nostrand Mathematical Studies, vol. 10. D. Van Nostrand Co., Inc., Toronto (1966)

    Google Scholar 

  2. Bonahon F.: Bouts des variétés hyperboliques de dimension 3. Ann. Math. 124(1), 71–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonahon F.: The geometry of Teichmüller space via geodesic currents. Invent. Math. 92(1), 139–162 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bridson M., Haefliger A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

    Google Scholar 

  5. Douady, A., Fathi, A., Fried, D., Laudenbach, F., Poénaru, V., Shub, M.: Travaux de Thurston sur les surfaces. Séminaire Orsay (seconde édition). Astérisque No. 66-67, Société Mathématique de France, Paris (1991)

  6. Duchin M., Leininger C.J., Rafi K.: Length spectra and degeneration of flat metrics. Invent. Math. 182, 231–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gardiner F.: Measured foliations and the minimal norm property for quadratic differentials. Acta Math. 152(1–2), 57–76 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gardiner F., Masur H.: Extremal length geometry of Teichmüller space. Complex Variables Theory Appl. 16(2–3), 209–237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hubbard J., Masur H.: Quadratic differentials and foliations. Acta Math. 142(3–4), 221–274 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Imayoshi Y., Taniguchi M.: Introduction to Teichmüller spaces. Springer, New York (1992)

    Book  MATH  Google Scholar 

  11. Ivanov, N.: Isometries of Teichmüller spaces from the point of view of Mostow rigidity. In: Turaev, V., Vershik, A. (eds.), Topology, Ergodic Theory, Real Algebraic Geometry Am. Math. Soc. Transl. Ser. 2, vol. 202, pp. 131–149. American Mathematical Society (2001)

  12. Kerckhoff S.: The asymptotic geometry of Teichmüller space. Topology 19, 23–41 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lenzhen A.: Teichmüller geodesics that do not have a limit in \({\mathcal{PMF}}\) . Geom. Topol. 12(1), 177–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, L., Su, W.: The horofunction compactification of Teichmüller metric, preprint, ArXiv.org. http://arxiv.org/abs/1012.0409

  15. Masur H.: On a class of geodesics in Teichmüller space. Ann. Math. 102, 205–221 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Masur H.: Interval exchange transformations and measured foliations. Ann. Math. 115, 169–200 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Masur H.: Two boundaries of Teichmüller space. Duke Math. 49, 183–190 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Masur, H., Tabachinikov, S.: Rational Billiards and Flat structures, Handbook of dynamical systems, vol. 1A, p. 10151089 North-Holland, Amsterdam (2002)

  19. McCarthy J., Papadopoulos A.: The visual sphere of Teichmüller space and a theorem of Masur-Wolf. Ann. Acad. Sci. Fenn. Math. 24, 147–154 (1999)

    MathSciNet  Google Scholar 

  20. Minsky Y.: Extremal length estimates and product regions in Teichmüller space. Duke Math. 83, 249–286 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miyachi H.: Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space. Geom. Dedicata 137, 113–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miyachi, H.: Gardiner–Masur boundary of Teichmuller space: vanishing subsurfaces and Uniquely ergodic boundary points, preprint, ArXiv.org. http://arxiv.org/abs/1002.1982

  23. Penner R., Harer J.: Combinatorics of Train Tracks. Annals of Mathematics Studies, vol. 125. Princeton University Press, Princeton (1992)

    Google Scholar 

  24. Rees, M.(1982) An alternative approach to the ergodic theory of measured foliations on surfaces. Ergod. Theory Dyn. Syst. 1 (1981)(4), 461–488

    Google Scholar 

  25. Rieffel M.: Group C*-algebra as compact quantum metric spaces. Doc. Math. 7, 605–651 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Strebel K.: Quadratic Differentials. Springer, Berlin (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Miyachi.

Additional information

Dedicated to Professor Masahiko Taniguchi on his 60th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyachi, H. Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II. Geom Dedicata 162, 283–304 (2013). https://doi.org/10.1007/s10711-012-9727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-012-9727-z

Keywords

Mathematics Subject Classification

Navigation