Skip to main content
Log in

The asymptotic geometry of the Teichmüller metric

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We determine the asymptotic behaviour of extremal length along arbitrary Teichmüller rays. This allows us to calculate the endpoint in the Gardiner–Masur compactification of any Teichmüller ray. We give a proof that this compactification is the same as the horofunction compactification. An important subset of the latter is the set of Busemann points. We show that the Busemann points are exactly the limits of the Teichmüller rays, and we give a necessary and sufficient condition for a sequence of Busemann points to converge to a Busemann point. Finally, we determine the detour metric on the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akian, M., Gaubert, S., Walsh, C.: The max–plus Martin boundary. Doc. Math. 14, 195–240 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of Nonpositive Curvature, Volume 61 of Progress in Mathematics. Birkhäuser Boston Inc., Boston (1985)

    Book  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  4. Farb, B., Masur, H.: Teichmüller geometry of moduli space, I: distance minimizing rays and the Deligne–Mumford compactification. J. Differ. Geom. 85(2), 187–227 (2010)

    Article  MATH  Google Scholar 

  5. Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces, volume 66 of Astérisque. Société Mathématique de France, Paris, . Séminaire Orsay, With an English summary (1979)

  6. Gardiner, F.P., Masur, H.: Extremal length geometry of Teichmüller space. Complex Var. Theory Appl. 16(2–3), 209–237 (1991)

    MATH  Google Scholar 

  7. Gromov, M.: Hyperbolic manifolds, groups and actions. In: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Volume 97 of Ann. of Math. Stud., pp. 183–213, Princeton, 1981. Princeton University Press (1978)

  8. Hubbard, J., Masur, H.: Quadratic differentials and foliations. Acta Math. 142(3–4), 221–274 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ivanov, N.V.: Isometries of Teichmüller spaces from the point of view of Mostow rigidity. In: Topology, Ergodic Theory, Real Algebraic Geometry, Volume 202 of Amer. Math. Soc. Transl. Ser. 2, pp. 131–149. Amer. Math. Soc., Providence (2001)

  10. Jenkins, J.A.: On the existence of certain general extremal metrics. Ann. of Math. 2(66), 440–453 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kerckhoff, S.P.: The asymptotic geometry of Teichmüller space. Topology 19(1), 23–41 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kravetz, S.: On the geometry of Teichmüller spaces and the structure of their modular groups. Ann. Acad. Sci. Fenn. Ser. A I No 278, 35 (1959)

    MathSciNet  MATH  Google Scholar 

  13. Lenzhen, A.: Teichmüller geodesics that do not have a limit in \({\mathscr {PMF}}\). Geom. Topol. 12(1), 177–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lenzhen, A., Masur, H.: Criteria for the divergence of pairs of Teichmüller geodesics. Geom. Dedic. 144, 191–210 (2010)

    Article  MATH  Google Scholar 

  15. Liu, L., Su, W.: The horofunction compactification of the Teichmüller metric. In: Handbook of Teichmüller theory, volume 19 of IRMA Lect. Math. Theor. Phys., pp. 355–374. Eur. Math. Soc., Zürich (2014)

  16. Masur, H.: On a class of geodesics in Teichmüller space. Ann. Math. (2) 102(2), 205–221 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Masur, H.: Uniquely ergodic quadratic differentials. Comment. Math. Helv. 55(2), 255–266 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Masur, H.: Interval exchange transformations and measured foliations. Ann. Math. (2) 115(1), 169–200 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Masur, H.: Two boundaries of Teichmüller space. Duke Math. J. 49(1), 183–190 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miyachi, H: On Gardiner–Masur boundary of Teichmüller space. In: Complex Analysis and Its Applications, Volume 2 of OCAMI Stud., pp. 295–300. Osaka Munich University Press, Osaka (2008)

  21. Miyachi, H.: Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space. Geom. Dedic. 137, 113–141 (2008)

    Article  MATH  Google Scholar 

  22. Miyachi, H.: Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II. Geom. Dedic. 162, 283–304 (2013)

    Article  MATH  Google Scholar 

  23. Miyachi, H.: Extremal length boundary of the Teichmüller space contains non-Busemann points. Trans. Am. Math. Soc. 366(10), 5409–5430 (2014)

    Article  MATH  Google Scholar 

  24. Rieffel, M.A.: Group \(C^*\)-algebras as compact quantum metric spaces. Doc. Math. 7, 605–651 (2002). (electronic)

    MathSciNet  MATH  Google Scholar 

  25. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  26. Strebel, K.: Über quadratische Differentiale mit geschlossenen Trajektorien und extremale quasikonforme Abbildungen. In: Festband 70. Geburtstag R. Nevanlinna, pp. 105–127. Springer, Berlin (1966)

  27. Thurston, W.: Minimal stretch maps between hyperbolic surfaces. Preprint (1986). arXiv:math/9801039

  28. Walsh, C.: Minimum representing measures in idempotent analysis. In: Tropical and Idempotent Mathematics, Volume 495 of Contemp. Math., pp. 367–382. Amer. Math. Soc., Providence (2009)

  29. Walsh, C.: The horoboundary and isometry group of Thurston’s Lipschitz metric. In: Handbook of Teichmüller theory. Vol. IV, Volume 19 of IRMA Lect. Math. Theor. Phys., pp. 327–353. Eur. Math. Soc., Zürich (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac Walsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, C. The asymptotic geometry of the Teichmüller metric. Geom Dedicata 200, 115–152 (2019). https://doi.org/10.1007/s10711-018-0364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0364-z

Keywords

Mathematics Subject Classification (2010)

Navigation