Skip to main content
Log in

Using phenotypic plasticity to understand the structure and evolution of the genotype–phenotype map

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Deciphering the genotype–phenotype map necessitates relating variation at the genetic level to variation at the phenotypic level. This endeavour is inherently limited by the availability of standing genetic variation, the rate of spontaneous mutation to novo genetic variants, and possible biases associated with induced mutagenesis. An interesting alternative is to instead rely on the environment as a source of variation. Many phenotypic traits change plastically in response to the environment, and these changes are generally underlain by changes in gene expression. Relating gene expression plasticity to the phenotypic plasticity of more integrated organismal traits thus provides useful information about which genes influence the development and expression of which traits, even in the absence of genetic variation. We here appraise the prospects and limits of such an environment-for-gene substitution for investigating the genotype–phenotype map. We review models of gene regulatory networks, and discuss the different ways in which they can incorporate the environment to mechanistically model phenotypic plasticity and its evolution. We suggest that substantial progress can be made in deciphering this genotype–environment–phenotype map, by connecting theory on gene regulatory network to empirical patterns of gene co-expression, and by more explicitly relating gene expression to the expression and development of phenotypes, both theoretically and empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Code availability

The code used to produce Figure 2 is available as online supplement.

References

  • Adrian-Kalchhauser I, Sultan SE, Shama LNS, Spence-Jones H, Tiso S et al (2020) Understanding “Non-genetic” Inheritance: insights from molecular-evolutionary crosstalk. Trends Ecol Evol 35:1078–1089

    Article  PubMed  Google Scholar 

  • Amoros-Moya D, Bedhomme S, Hermann M, Bravo IG (2010) Evolution in regulatory regions rapidly compensates the cost of nonoptimal codon usage. Mol Biol Evol 27:2141–2151

    Article  CAS  PubMed  Google Scholar 

  • Ancel LW, Fontana W (2000) Plasticity, evolvability, and modularity in RNA. J Exp Zool 288:242–283

    Article  CAS  PubMed  Google Scholar 

  • Angers B, Perez M, Menicucci T, Leung C (2020) Sources of epigenetic variation and their applications in natural populations. Evolut Appl 13(6):1262–1278

    Article  Google Scholar 

  • Azevedo RBR, Lohaus R, Srinivasan S, Dang KK, Burch CL (2006) Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440:87–90

    Article  CAS  PubMed  Google Scholar 

  • Baldwin JM (1896) A new factor in evolution. Am Nat 30:441–451

    Article  Google Scholar 

  • Barghi N, Tobler R, Nolte V, Jakšić AM, Mallard F et al (2019) Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS Biol 17:e3000128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck GR, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci 97:8352–8357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beldade P, Mateus AR, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20:1347–1363

    Article  PubMed  Google Scholar 

  • Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105(1):105–112

    Article  CAS  PubMed  Google Scholar 

  • Bonduriansky R, Day T (2009) Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst 40:103–125

    Article  Google Scholar 

  • Bonduriansky R, Day T (2018) Extended heredity. Princeton University Press, Princeton

    Book  Google Scholar 

  • Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braendle C, Baer CF, Félix MA (2010) Bias and evolution of the mutationally accessible phenotypic space in a developmental system. PLoS Genet 6:e1000877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandis G, Hughes D (2016) The selective advantage of synonymous codon usage bias in Salmonella. PLoS Genet 12:e1005926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brennan GL, Colegrave N, Collins S (2017) Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc Natl Acad Sci USA 114:9930–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brun-Usan M, Rago A, Thies C, Uller T, Watson RA (2020) Developmental models reveal the role of phenotypic plasticity in explaining genetic evolvability. bioRxiv 2020.06.29.179226

  • Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109(1):21–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll SB (2008) Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D (2010) Elements of evolutionary genetics. Roberts and Company, Greenwood Village, Colorado

    Google Scholar 

  • Chevin L-M, Hoffmann AA (2017) Evolution of phenotypic plasticity in extreme environments. Philos Trans R Soc B 372:20160138

    Article  Google Scholar 

  • Crombach A, Wotton KR, Jiménez-Guri E, Jaeger J (2016) Gap gene regulatory dynamics evolve along a genotype network. Mol Biol Evol 33:1293–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • Debat V, David P (2001) Mapping phenotypes: canalization, plasticity and developmental stability. Trends Ecol Evol 16:555–561

    Article  Google Scholar 

  • Draghi JA, Whitlock MC (2012) Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66:2891–2902

    Article  PubMed  Google Scholar 

  • Duncan EJ, Gluckman PD, Dearden PK (2014) Epigenetics, plasticity, and evolution: how do we link epigenetic change to phenotype? J Exp Zool Part B 322(4):208–220

    Article  CAS  Google Scholar 

  • Edelaar P, Bonduriansky R, Charmantier A, Danchin E, Pujol B (2021) Response to Kalchhauser et al.: inherited gene regulation is not enough to understand nongenetic inheritance. Trends Ecol Evol 36:475–476

    Article  PubMed  Google Scholar 

  • Espinosa-Soto C (2016) Selection for distinct gene expression properties favours the evolution of mutational robustness in gene regulatory networks. J Evol Biol 29:2321–2333

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Soto C, Martin OC, Wagner A (2011) Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC Evol Biol 11:1–14

    Article  Google Scholar 

  • Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641

    Article  PubMed  PubMed Central  Google Scholar 

  • Falconer DS, MacKay TF (1996) Introduction to quantitative genetics. Longman Group, Harlow

    Google Scholar 

  • Fierst JL (2011) A history of phenotypic plasticity accelerates adaptation to a new environment. J Evol Biol 24:1992–2001

    Article  CAS  PubMed  Google Scholar 

  • Fierst JL, Phillips PC (2015) Modeling the evolution of complex genetic systems: the gene network family tree. J Exp Zool Part B Mol Dev Evol 324:1–12

    Article  Google Scholar 

  • Furusawa C, Kaneko K (2018) Formation of dominant mode by evolution in biological systems. Phys Rev E 97:042410

    Article  CAS  PubMed  Google Scholar 

  • Gabriel W (2005) How stress selects for reversible phenotypic plasticity. J Evol Biol 18:873–883

    Article  CAS  PubMed  Google Scholar 

  • Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN et al (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525:372–375

    Article  CAS  PubMed  Google Scholar 

  • Gibert JM, Mouchel-Vielh E, De Castro S, Peronnet F (2016) Phenotypic plasticity through transcriptional regulation of the evolutionary hotspot gene tan in Drosophila melanogaster. PLoS Genet 12(8):e1006218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gingold H, Pilpel Y (2011) Determinants of translation efficiency and accuracy. Mol Syst Biol 7:481

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldschmidt RB (1935) Gen und ausseneigenschaft. Zeitschrift Für Indukt Abstammungs Und Vererbungslehre 69:70–131

    Google Scholar 

  • Goldschmidt RB, Piternick LK (1957) The genetic background of chemically induced phenocopies in Drosophila. J Exp Zool 135:127–202

    Article  CAS  PubMed  Google Scholar 

  • Grether GF (2005) Environmental change, phenotypic plasticity, and genetic compensation. Am Nat 166:E115–E123

    Article  PubMed  Google Scholar 

  • Groen SC, Ćalić I, Joly-Lopez Z, Platts AE, Choi JY et al (2020) The strength and pattern of natural selection on gene expression in rice. Nature 578:572–576

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW et al (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Smith ZD, Bock C, Boyle P, Gnirke A et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6(4):468–481

    Article  CAS  PubMed  Google Scholar 

  • Hagolani PF, Zimm R, Vroomans R, Salazar-Ciudad I (2021) On the evolution and development of morphological complexity: a view from gene regulatory networks. PLoS Comput Biol 17:e1008570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TF (2006) The evolution of genetic. Architecture. https://doi.org/10.1146/annurev.ecolsys.37.091305.11022437:123-157

    Article  Google Scholar 

  • Hansen TF, Wagner GP (2001) Modeling genetic architecture: a multilinear theory of gene interaction. Theoret Popul Biol 59:61–86

    Article  CAS  Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of population genetics. Sinauer associates, Sunderland

    Google Scholar 

  • Herman JJ, Sultan SE (2016) DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc R Soc B 283:20160988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho WC, Zhang J (2018) Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nat Commun 9:1–11

    CAS  Google Scholar 

  • Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016

    Article  PubMed  Google Scholar 

  • Houle D, Mezey J, Galpern P, Carter A (2003) Automated measurement of Drosophila wings. BMC Evol Biol 3:1–13

    Article  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Agrawal AF (2016) Experimental evolution of gene expression and plasticity in alternative selective regimes, (D.J. Begun, Ed.). PLoS Genet 12:e1006336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68:243–274

    Article  CAS  PubMed  Google Scholar 

  • Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D et al (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430:368–371

    Article  CAS  PubMed  Google Scholar 

  • Kauffman S, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theoret Biol 128:11–45

    Article  CAS  Google Scholar 

  • Kirkpatrick M, Heckman N (1989) A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J Math Biol 27:429–450

    Article  CAS  PubMed  Google Scholar 

  • Koch EL, Guillaume F (2020a) Restoring ancestral phenotypes is a general pattern in gene expression evolution during adaptation to new environments in Tribolium castaneum. Mol Ecol 29:3938–3953

    Article  CAS  PubMed  Google Scholar 

  • Koch EL, Guillaume F (2020b) Additive and mostly adaptive plastic responses of gene expression to multiple stress in Tribolium castaneum. PLoS Genet 16:e1008768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kratochwil CF, Meyer A (2015) Closing the genotype-phenotype gap: emerging technologies for evolutionary genetics in ecological model vertebrate systems. BioEssays 37:213–226

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:1–13

    Article  CAS  Google Scholar 

  • Láruson ÁJ, Yeaman S, Lotterhos KE (2020) The importance of genetic redundancy in evolution. Trends Ecol Evol 35:809–822

    Article  PubMed  Google Scholar 

  • Lenormand T, Chevin LM, Bataillon T (2016) Parallel evolution: what does it (not) tell us and why is it (still) interesting? In: Ramsey G, Pence CH (eds) Chance in evolution. University of Chicago Press, Chicago

    Google Scholar 

  • Levins R (1963) Theory of fitness in a heterogeneous environment. II. Developmental flexibility and niche selection. Am Nat 97:75–90

    Article  Google Scholar 

  • Levis NA, Pfennig DW (2016) Evaluating “Plasticity-First” evolution in nature: key criteria and empirical approaches. Trends Ecol Evol 31:563–574

    Article  PubMed  Google Scholar 

  • Levis NA, Isdaner AJ, Pfennig DW (2018) Morphological novelty emerges from pre-existing phenotypic plasticity. Nat Ecol Evol 2:1289–1297

    Article  PubMed  Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Lind MI, Yarlett K, Reger J, Carter MJ, Beckerman AP (2015) The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc Biol Sci 282:20151651

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Li YI, Pritchard JK (2019) Trans effects on gene expression can drive omnigenic inheritance. Cell 177:1022-1034.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • MacKay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  • Marin-Riera M, Brun-Usan M, Zimm R, Välikangas T, Salazar-Ciudad I (2015) Computational modeling of development by epithelia, mesenchyme and their interactions: a unified model. Bioinformatics 32:219–225

    Article  PubMed  Google Scholar 

  • Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G (2018) Cellular mechanotransduction: from tension to function. Front Physiol 9:824

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller SR, Longley R, Hutchins PR, Bauersachs T (2020) Cellular Innovation of the cyanobacterial heterocyst by the adaptive loss of plasticity. Curr Biol 30:344–350

    Article  CAS  PubMed  Google Scholar 

  • Milocco L, Salazar-Ciudad I (2020) Is evolution predictable? Quantitative genetics under complex genotype-phenotype maps. Evolution 74(2):230–244

    Article  PubMed  Google Scholar 

  • Monteiro A, Tong X, Bear A, Liew SF, Bhardwaj S et al (2015) Differential expression of ecdysone receptor leads to variation in phenotypic plasticity across serial homologs. PLoS Genet 11:e1005529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore MP, Whiteman HH, Martin RA (2019) A mother’s legacy: the strength of maternal effects in animal populations. Ecol Lett 22:1620–1628

    Article  PubMed  Google Scholar 

  • Murrell A, Rakyan VK, Beck S (2005) From genome to epigenome. Hum Mol Genet 14(Suppl1):R3–R10

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A et al (2011) DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet 7(12):e1002447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nerlich B, Dingwall R, Clarke DD (2002) The book of life: how the completion of the human genome project was revealed to the public. Health 6:445–469

    Article  Google Scholar 

  • Noble DWA, Radersma R, Uller T (2019) Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc Natl Acad Sci USA 116:13452–13461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odorico A, Rünneburger E, Le Rouzic A (2018) Modelling the influence of parental effects on gene-network evolution. J Evol Biol 31:687–700

    Article  PubMed  Google Scholar 

  • Orr JA, Vinebrooke RD, Jackson MC, Kroeker KJ, Kordas RL et al (2020) Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc R Soc B 287:20200421

    Article  PubMed  PubMed Central  Google Scholar 

  • Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177

    Article  CAS  PubMed  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins Univ Press, Baltimore

    Google Scholar 

  • Pinho R, Borenstein E, Feldman MW (2012) Most networks in Wagner’s model are cycling. PLoS ONE 7:e34285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Digit patterning is controlled by a Bmp-Sox9-Wnt. Science 345:566–570

    Article  CAS  PubMed  Google Scholar 

  • Ratikainen II, Kokko H (2019) The coevolution of lifespan and reversible plasticity. Nat Commun 10(1):1–7

    Article  CAS  Google Scholar 

  • Rhoné B, Brandenburg JT, Austerlitz F (2011) Impact of selection on genes involved in regulatory network: a modelling study. J Evol Biol 24:2087–2098

    Article  PubMed  Google Scholar 

  • Rice SH (2002) A general population genetic theory for the evolution of developmental interactions. Proc Natl Acad Sci USA 99:15518–15523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockman MV (2012) The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66:1–17

    Article  PubMed  Google Scholar 

  • Rünneburger E, Le Rouzic A (2016) Why and how genetic canalization evolves in gene regulatory networks. BMC Evol Biol 16:1–11

    Article  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464:583–586

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I, Marín-Riera M (2013) Adaptive dynamics under development-based genotype-phenotype maps. Nature 497:361–364

    Article  CAS  PubMed  Google Scholar 

  • Santiago E, Albornoz J, Dominguez A, Toro MA, Lopez-Fanjul C (1992) The distribution of spontaneous mutations on quantitative traits and fitness in Drosophila melanogaster. Genetics 132:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  • Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–1774

    Article  PubMed  Google Scholar 

  • Schmalhausen II (1949) Factors of evolution: the theory of stabilizing selection. Blakiston, Philadelphia

    Google Scholar 

  • Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16:299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99:10528–10532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegal ML, Promislow DEL, Bergman A (2007) Functional and evolutionary inference in gene networks: does topology matter? Genetica 129(1):83–103

    Article  CAS  PubMed  Google Scholar 

  • Sobotka JA, Daley M, Chandrasekaran S, Rubin BD, Thompson GJ (2016) Structure and function of gene regulatory networks associated with worker sterility in honeybees. Ecol Evol 6:1692–1701

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62:2155–2177

    Article  PubMed  PubMed Central  Google Scholar 

  • Strenkert D, Schmollinger S, Gallaher SD, Salomé PA, Purvine SO et al (2019) Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc Natl Acad Sci USA 116:2374–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF et al (2012) The molecular diversity of adaptive convergence. Science 335:457–461

    Article  CAS  PubMed  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  • Van Gestel J, Weissing FJ (2016) Regulatory mechanisms link phenotypic plasticity to evolvability. Sci Rep 6:1–15

    CAS  Google Scholar 

  • Velotta JP, Ivy CM, Wolf CJ, Scott GR, Cheviron ZA (2018) Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution 72:2712–2727

    Article  PubMed  Google Scholar 

  • Verd B, Crombach A, Jaeger J (2017) Dynamic maternal gradients control timing and shift-rates for drosophila gap gene expression. PLoS Comput Biol 13:1005285

    Article  CAS  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 118–126

  • Waddington CH (1957) The strategy of the genes. Routledge, London

    Google Scholar 

  • Wagner GP (1989) Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics 122:223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner A (1994) Evolution of gene networks by gene duplications: A mathematical model and its implications on genome organization (transcriptional regulation/molecular evolution/homeobox gene). Proc Natl Acad Sci USA 91:4387–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner A (1996) Does evolutionary plasticity evolve? Evolution 50:1008–1023

    Article  PubMed  Google Scholar 

  • Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Zhang J (2011) 2011 The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat Rev Genet 123(12):204–213

    Article  CAS  Google Scholar 

  • Wang ZY, Leushkin E, Liechti A, Ovchinnikova S, Mößinger K et al (2020) Transcriptome and translatome co-evolution in mammals. Nature 588:642–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson RA, Wagner GP, Pavlicev M, Weinreich DM, Mills R (2014) The evolution of phenotypic correlations and “developmental memory.” Evolution 68:1124–1138

    Article  PubMed  PubMed Central  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Whitlock AOB, Peck KM, Azevedo RBR, Burch CL (2016) An evolving genetic architecture interacts with Hill-Robertson interference to determine the benefit of sex. Genetics 203:923–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216

    Article  CAS  PubMed  Google Scholar 

  • Yang HP, Tanikawa AY, Van Voorhies WA, Silva JC, Kondrashov AS (2001) Whole-genome effects of ethyl methanesulfonate-induced mutation on nine quantitative traits in outbred Drosophila melanogaster. Genetics 157:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yannai A, Katz S, Hershberg R (2018) The codon usage of lowly expressed genes is subject to natural selection. Genome Biol Evol 10:1237–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yvert G, Ohnuki S, Nogami S, Imanaga Y, Fehrmann S et al (2013) Single-cell phenomics reveals intra-species variation of phenotypic noise in yeast. BMC Syst Biol 7:1–16

    Article  Google Scholar 

  • Zhou S, Campbell TG, Stone EA, Mackay TFC, Anholt RRH (2012) Phenotypic plasticity of the drosophila transcriptome. PLoS Genet 8:e1002593

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank JM Gibert and an anonymous reviewer for useful criticisms on this manuscript.

Funding

CL was supported by a Fonds de Recherche du Québec—Nature et Technologies (FRQNT) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis-Miguel Chevin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue “The relationship between genotype and phenotype: new insights on an old question”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Supplementary file1 (ZIP 5 kb)

Appendix: Model description

Appendix: Model description

The model used to simulate environmental effects on gene coexpression in Fig. 2 is a version of Wagner’s (1994) model, similar to that in Siegal and Bergman (2002). The 5-gene network was encoded in a 5 × 5 matrix W, in which positive terms stand for transcription activation, and negative terms for transcription repression. Gene expression levels were stored in a vector St updated dynamically as

$${\mathbf{S}}_{{{\text{t}} + {1}}} = {\text{ f}}({\mathbf{W}} \, {\mathbf{S}}_{{\text{t}}} + {\mathbf{z}}_{{{\text{t}} + {1}}} ),$$
(1)

where f(x) = 1/(1+e−4x) is a sigmoid function ensuring that gene expressions scale continuously between 0 (no expression) and 1 (maximum expression), and ζ is normally distributed noise component, with same standard deviation σζ = 0.05 for all genes and no correlation among genes. The initial gene expression level was set to S0 = 0.5 for all genes, and then updated iteratively for 20 discrete time steps according to the netword equation (1). The average expression level over the four last time steps was taken as an approximation of the equilibrium.

We allowed the environment to affect the network in three possible modes, which all involved the first gene in the network, for consistency. In mode (1), the environment modified the initial expression level of the first gene of the network, which was set to a value s0, drawn randomly from a uniform distribution over [0,1] for each replicate simulation. In mode (2), the environment had a sustained effect on expression of the first gene of the network, which was maintained at a constant value s, also drawn randomly from a uniform distribution over [0,1] for each replicate simulation. In mode (3), the environment modified the cis-regulatory region of gene 1, therefore affecting how it was regulated by other genes. This was obtained by multiplying the first line of matrix W by (1+k), with k drawn from a normal distribution with mean zero and standard deviation σk = 0.1. The matrices of correlations in gene expression over simulation replicates were then computed for each mode of environmental effects, and represented in Fig. 2C–E. The model was coded in R version 4.0.3 (R core team 2020), scripts are provided as supplementary files.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevin, LM., Leung, C., Le Rouzic, A. et al. Using phenotypic plasticity to understand the structure and evolution of the genotype–phenotype map. Genetica 150, 209–221 (2022). https://doi.org/10.1007/s10709-021-00135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-021-00135-5

Keywords

Navigation