Skip to main content
Log in

Genetic diversity of native and introduced Phragmites (common reed) in Wisconsin

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Two subspecies of common reed (Phragmites australis; Poaceae) exist in northern North America: the native P. australis subsp. americanus and the introduced P. australis subsp. australis. There are numerous native populations in Wisconsin, in addition to the more recently established populations of the introduced subspecies. We studied populations of both P. australis subspecies across Wisconsin in order to characterize the genetic diversity of both subspecies and to investigate whether any instances of hybridization could be ascertained in Wisconsin. Using eight microsatellite markers, we found minimal overlap in the alleles that could be recovered from native and introduced plants, and we found no evidence to suggest hybridization between subspecies, even in localities where native and introduced plants grow in close proximity. Overall, we found greater genetic variation in plants of the introduced subspecies relative to the native subspecies, and we observed some geographic patterns of allelic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert A, Brisson J, Belzile F, Turgeon J, Lavoie C (2015) Strategies for a successful plant invasion: the reproduction of Phragmites australis in north-eastern North America. J Ecol 103:1529–1537

    Article  CAS  Google Scholar 

  • Catling PM, Mitrow G (2011) The recent spread and potential distribution of Phragmites australis subsp. australis in Canada. Can Field 125:95–104

    Article  Google Scholar 

  • Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent JM, de Beaulieu JL, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecol Biogeogr 15:271–282

    Article  Google Scholar 

  • Clayton L, Attig JW, Mickelson DM, Johnson MD, Syverson KM (2006) Glaciation of Wisconsin, 3rd edn. Wisconsin Geological and Natural History Survey, Madison

    Google Scholar 

  • Clevering OA, Lissner J (1999) Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot 64:185–208

    Article  Google Scholar 

  • Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Covarrubias-Pazaran G, Diaz-Garcia L, Schlautman B, Salazar W, Zalapa J (2016) Fragman: an R package for fragment analysis. BMC Genet 17:1–8

    Article  CAS  Google Scholar 

  • Culley TM, Stamper TI, Stokes RL, Brzyski JR, Hardiman NA, Klooster MR, Merritt BJ (2013) An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl Plant Sci 1:1300027

    Article  Google Scholar 

  • Curtis JT (1959) The vegetation of Wisconsin. The University of Wisconsin Press, Madison

    Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of‐the‐art molecular and statistical tools. Mol Ecol 23:40–69

    Article  PubMed  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B (2016) Is there a genetic paradox of biological invasion? Ann Rev Ecol Evol Syst 47:51–72

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Meth Ecol Evol 6:925–929

    Article  Google Scholar 

  • Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Change Biol 22:151–163

    Article  Google Scholar 

  • Granberg JE, Woods B (2017) Control of non-native Phragmites within the Great Lakes basins: a case study in invasive species strategic planning and implementation. Presented at the 39th annual Wisconsin Lakes Partnership Convention, Stevens Point, Wisconsin, 6 April 2017

  • Hazelton ELG, Mozdzer TJ, Burdick DM, Kettenring KM, Whigham DF (2014) Phragmites australis management in the United States: 40 years of methods and outcomes. AoB Plants 6:plu001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishii J, Kadono Y (2002) Factors influencing seed production of Phragmites australis. Aquat Bot 72:129–141

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kettenring KM, Mock KE (2012) Genetic diversity, reproductive mode, and dispersal differ between the cryptic invader, Phragmites australis, and its native conspecific. Biol Invasions 14:2489–2504

    Article  Google Scholar 

  • Kettenring KM, McCormick MK, Baron HM, Whigham DF (2011) Mechanisms of Phragmites australis invasion: feedbacks among genetic diversity, nutrients, and sexual reproduction. J Appl Ecol 48:1305–1313

    Article  Google Scholar 

  • Kiviat E (2013) Ecosystem services of Phragmites in North America with emphasis on habitat functions. AoB Plants 5:plt008

    Article  PubMed Central  Google Scholar 

  • Lambert AM, Casagrande RA (2007) Characteristics of a successful estuarine invader: evidence of self-compatibility in native and non-native lineages of Phragmites australis. Mar Ecol Prog Ser 337:299–301

    Article  Google Scholar 

  • Lambertini C (2016) Heteroplasmy due to chloroplast paternal leakage: another insight into Phragmites haplotypic diversity in North America. Biol Invasions 18:2443–2455

    Article  Google Scholar 

  • Lambertini C, Gustafsson MHG, Frydenberg J, Lissner J, Speranza M, Brix H (2006) A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst Evol 258:161–182

    Article  Google Scholar 

  • Lambertini C, Sorrell BK, Riis T, Olesen B, Brix H (2012) Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants pls020

  • Marks M, Lapin B, Randall J (1994) Phragmites australis (P. communis): threats, management and monitoring. Nat Area J 14:285–294

    Google Scholar 

  • McCormick MK, Kettenring KM, Baron HM, Whigham DF (2010) Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns, Allee effects and interpretation. J Ecol 98:1369–1378

    Article  Google Scholar 

  • McCormick MK, Brooks HE, Whigham DF (2016) Microsatellite analysis to estimate realized dispersal distance in Phragmites australis. Biol Invasions 18:2497–2504

    Article  Google Scholar 

  • Meyerson LA, Viola DV, Brown RN (2009) Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol Invasions 12:103–111

    Article  Google Scholar 

  • Moody ML, Les DL (2007) Geographic distribution and genotypic composition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) populations in North America. Biol Invasions 9:559–570

    Article  Google Scholar 

  • Mozdzer TJ, Megonigal JP (2012) Jack-and-master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. PLoS ONE 7:e42794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park MG, Blossey B (2008) Importance of plant traits and herbivory for invasiveness of Phragmites australis (Poaceae). Am J Bot 95:1557–1568

    Article  PubMed  Google Scholar 

  • Paul J, Vachon N, Garroway CJ, Freeland JR (2010) Molecular data provide strong evidence of natural hybridization between native and introduced lineages of Phragmites australis in North America. Biol Invasions 12:2967–2973

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Article  Google Scholar 

  • R Development Core Team (2019) R: A language and environment for statistical computing. http://www.R-project.org

  • Roberts DR, Hamann A (2015) Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc R Soc B 282:20142903

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogstad SH (1992) Saturated NaCl-CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon 41:701–708

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saltonstall K (2003a) A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:1043–1047

    Article  Google Scholar 

  • Saltonstall K (2003b) Microsatellite variation within and among North American lineages of Phragmites australis. Mol Ecol 12:1689–1702

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall K (2011) Remnant native Phragmites australis maintains genetic diversity despite multiple threats. Conserv Genet 12:1027–1033

    Article  Google Scholar 

  • Saltonstall K, Stevenson JC (2007) The effect of nutrients on seedling growth of native and introduced Phragmites australis. Aquat Bot 86:331–336

    Article  CAS  Google Scholar 

  • Saltonstall K, Peterson PM, Soreng RJ (2004) Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. Sida 21:683–692

    Google Scholar 

  • Saltonstall K, Castillo HE, Blossey B (2014) Confirmed field hybridization of native and introduced Phragmites australis (Poaceae) in North America. Am J Bot 101:211–215

    Article  PubMed  Google Scholar 

  • Saltonstall K, Lambert AM, Rice N (2016) What happens in Vegas, better stay in Vegas: Phragmites australis hybrids in the Las Vegas Wash. Biol Invasions 18:2463–2474

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad of Sci USA 74:5463–5467

    Article  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier J (1997) Ade-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • Thompson JD (1991) The biology of an invasive plant. Bioscience 41:393–401

    Article  Google Scholar 

  • Tippery NP, Sears NL, Zentner AB, Sivadas V (2018) Evidence for allopolyploid speciation in Nymphoides (Menyanthaceae). Syst Bot 43:117–129

    Article  Google Scholar 

  • Tsai YHE, Manos PS (2010) Host density drives the postglacial migration of the tree parasite, Epifagus virginiana. Proc Natl Acad Sci USA 107:17035–17040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Welch BL (1947) The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34:28–35

    PubMed  CAS  Google Scholar 

  • Williams J, Lambert AM, Long R, Saltonstall K (2019) Does hybrid Phragmites australis differ from native and introduced lineages in reproductive, genetic, and morphological traits? Am J Bot 106:29–41

    Article  PubMed  Google Scholar 

  • Wu CA, Murray LA, Heffernan KE (2015) Evidence for natural hybridization between native and introduced lineages of Phragmites australis in the Chesapeake Bay watershed. Am J Bot 102:805–812

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are extremely grateful for the individuals who supplied samples: K. Anderson, C. Bohn, C. Curney, S. Davis-Faust, K. Dolata, J. Estrada, D. Feirer, S. Garske, S. Goodwin, M. Hess, S. Johnson, S. Kirby, J. Lepsch, C. MacDonald, R. Parchim, J. Scherer, I. Shackleford, R. Sharka, A. Smith, M. Sundeen, J. Wahls, C. Weber-Starling, A. Wirt, and B. Woods; K. Monson, A. Olson, and A. Vang provided laboratory assistance. We are grateful to the Wisconsin Department of Natural Resources for funding and supporting this study. B. Woods was instrumental in providing us with samples, and S. Schumacher and J. Granberg provided helpful logistical support. Additional support was provided by the University of Wisconsin-Whitewater Undergraduate Research Program and the Department of Biological Sciences, University of Wisconsin-Whitewater.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. Tippery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 60.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tippery, N.P., Pesch, J.D., Murphy, B.J. et al. Genetic diversity of native and introduced Phragmites (common reed) in Wisconsin. Genetica 148, 165–172 (2020). https://doi.org/10.1007/s10709-020-00098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-020-00098-z

Keywords

Navigation