Skip to main content
Log in

Slow inbred lines of Drosophila melanogaster express as much inbreeding depression as fast inbred lines under semi-natural conditions

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Selection may reduce the deleterious consequences of inbreeding. This may be due to purging of recessive deleterious alleles or balancing selection favouring heterozygote offspring. Such selection is expected to be more efficient at slower compared to at faster rates of inbreeding. In this study we tested the impact of inbreeding and the rate of inbreeding on fitness related traits (egg productivity, egg-to-adult viability, developmental time and behaviour) under cold and benign semi-natural thermal conditions using Drosophila melanogaster as a model organism. We used non-inbred control and slow and fast inbred lines (both with an expected inbreeding level of 0.25). The results show that contrary to expectations the slow inbred lines do not maintain higher average fitness than the fast inbred lines. Furthermore, we found that stressful environmental conditions increased the level of inbreeding depression but the impact of inbreeding rate on the level of inbreeding depression was not affected by the environmental conditions. The results do not support the hypothesis that inbreeding depression is less severe with slow compared to fast rates of inbreeding and illustrate that although selection may be more efficient with slower rates of inbreeding this does not necessary lead to less inbreeding depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. Heredity 95:235–242

    Article  PubMed  CAS  Google Scholar 

  • Auld JR, Relyea RA (2010) Inbreeding depression in adaptive plasticity under predation risk in a freshwater snail. Biol Lett 6:222–224

    Article  PubMed  Google Scholar 

  • Ballou JD (1997) Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations. J Hered 88:169–178

    PubMed  CAS  Google Scholar 

  • Bell PA, Chaturvedi S, Gelfand CA, Huang CY, Kochersperger M, Kopla R, Modica F, Pohl M, Varde S, Zhao RB, Zhao XJ, Boyce-Jacino MT (2002) SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques 32(Suppl):70–77

    Google Scholar 

  • Bensch S, Andren H, Hansson B, Pedersen HC, Sand H, Sejberg D, Wabakken P, Akesson M, Liberg O (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS One 1:e72

    Article  PubMed  Google Scholar 

  • Bijlsma R, Bundgaard J, van Putten WF (1999) Environmental dependence of inbreeding depression and purging in Drosophila melanogaster. J Evol Biol 12:1125–1137

    Article  Google Scholar 

  • Boakes E, Wang JL (2005) A simulation study on detecting purging of inbreeding depression in captive populations. Genet Res 86:139–148

    Article  PubMed  Google Scholar 

  • Bubliy OA, Loeschcke V (2005) Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J Evol Biol 18:789–803

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Evol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth D, Willis JF (2009) Fundamental concepts in genetics—the genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  PubMed  CAS  Google Scholar 

  • Cheptou PO, Berger A, Blanchard A, Collin C, Escarre J (2000) The effect of drought stress on inbreeding depression in four populations of the Mediterranean outcrossing plant Crepis sancta (Asteraceae). Heredity 85:294–302

    Article  PubMed  Google Scholar 

  • Crnokrak P, Barrett SCH (2002) Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56:2347–2358

    PubMed  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory, 1st edn. Harper and Row, New York

    Google Scholar 

  • Demontis D, Pertoldi C, Loeschcke V, Mikkelsen K, Axelsson T, Kristensen TN (2009) Efficiency of selection, as measured by single nucleotide polymorphism variation, is dependent on inbreeding rate in Drosophila melanogaster. Mol Ecol 18:4551–4563

    Article  PubMed  CAS  Google Scholar 

  • Dudash MR (1990) Relative fitness of selfed and outcrossed progeny in a self-compatible, protandrous species, Sabatia angularis L. (Gentianaceae): a comparison in 3 environments. Evolution 44:1129–1139

    Article  Google Scholar 

  • Ehiobu NG, Goddard ME, Taylor JF (1989) Effect of rate of inbreeding on inbreeding depression in Drosophila melanogaster. Theor Appl Genet 77:123–127

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex

    Google Scholar 

  • Ferreira AGA, Amos W (2006) Inbreeding depression and multiple regions showing heterozygote advantage in Drosophila melanogaster exposed to stress. Mol Ecol 15:3885–3893

    Article  PubMed  CAS  Google Scholar 

  • Fowler K, Whitlock MC (1999) The distribution of phenotypic variance with inbreeding. Evolution 53:1143–1156

    Article  Google Scholar 

  • Fox CW, Scheibly KL, Reed DH (2008) Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution 62:2236–2249

    Article  PubMed  Google Scholar 

  • Frydenberg J, Hoffmann AA, Loeschcke V (2003) DNA sequence variation and latitudinal association in hsp23, hsp26 and hsp27 from natural populations of Drosophila melanogaster. Mol Ecol 12:2025–2032

    Article  PubMed  CAS  Google Scholar 

  • Fu YB, Namkoong G, Carlson JE (1998) Comparison of breeding strategies for purging inbreeding depression via simulation. Conserv Biol 12:856–864

    Article  Google Scholar 

  • Gibbs AG (1999) Laboratory selection for the comparative physiologist. J Exp Biol 202:2709–2718

    PubMed  CAS  Google Scholar 

  • Glémin S (2003) How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57:2678–2687

    PubMed  Google Scholar 

  • Grueber CE, Wallis GP, Jamieson IG (2008) Heterozygosity-fitness correlations and their relevance to studies on inbreeding depression in threatened species. Mol Ecol 17:3978–3984

    Article  PubMed  Google Scholar 

  • Hansson B (2004) Marker-based relatedness predicts egg-hatching failure in great warblers. Conserv Genet 5:339–348

    Article  CAS  Google Scholar 

  • Harshman LG, Hoffmann AA (2000) Laboratory selection experiments using Drosophila: what do they really tell us? Trends Ecol Evol 15:32–36

    Article  PubMed  Google Scholar 

  • Hedrick PW (1994) Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity 73:363–372

    Article  PubMed  Google Scholar 

  • Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Hedrick PW, Fredrickson RJ (2008) Captive breeding and the reintroduction of Mexican and red wolves. Mol Ecol 17:344–350

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann AA, Parsons PA (1997) Extreme environmental change and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Jimenez JA, Hughes KA, Alaks G, Graham L, Lacy RC (1994) An experimental study of inbreeding depression in a natural habitat. Science 266:271–273

    Article  PubMed  CAS  Google Scholar 

  • Kaeuffer R, Coltman DW, Chapuis JL, Pontier D, Reale D (2007) Unexpected heterozygosity in an island mouflon population founded by a single pair of individuals. Proc R Soc B Biol Sci 274:527–533

    Article  CAS  Google Scholar 

  • Kalinowski ST, Hedrick PW (1999) Detecting inbreeding depression is difficult in captive endangered species. Anim Conserv 2:131–136

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keller LF, Arcese P, Smith JNM, Hochachka WM, Stearns SC (1994) Selection against inbred song sparrows during a natural population bottleneck. Nature 372:356–357

    Article  PubMed  CAS  Google Scholar 

  • Kristensen TN, Pedersen KS, Sørensen P, Kruhøffer M, Loeschcke V (2005a) Genome-wide analysis on inbreeding effects on gene expression in Drosophila melanogaster. Genetics 171:57–167

    Article  Google Scholar 

  • Kristensen TN, Sørensen AC, Sorensen D, Pedersen KS, Sørensen JG, Loeschcke V (2005b) A test of quantitative genetic theory using Drosophila—effects of inbreeding and rate of inbreeding on heritabilities and variance components. J Evol Biol 18:763–770

    Article  PubMed  CAS  Google Scholar 

  • Kristensen TN, Sørensen P, Pedersen KS, Kruhøffer M, Loeschcke V (2006) Inbreeding by environmental interactions affect gene expression in Drosophla melanogaster. Genetics 173:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Kristensen TN, Barker JSF, Pedersen KS, Loeschcke V (2008a) Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions. Proc R Soc B Biol Sci 275:2055–2061

    Article  Google Scholar 

  • Kristensen TN, Loeschcke V, Hoffmann AA (2008b) Linking inbreeding effects in captive populations with fitness in the wild: Release of replicated Drosophila melanogaster lines under different temperatures. Conserv Biol 22:189–199

    Article  PubMed  Google Scholar 

  • Kristensen TN, Pedersen KS, Vermeulen CJ, Loeschcke V (2010) Research on inbreeding in the ‘omic’ era. Trends Ecol Evol 25:44–52

    Article  PubMed  Google Scholar 

  • Lande R, Schemske DW (1985) The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39:24–40

    Article  Google Scholar 

  • Lerner IM (1954) Genetic homeostasis. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Liao W, Reed DH (2009) Inbreeding-environment interactions increase extinction risk. Anim Conserv 12:54–61

    Article  CAS  Google Scholar 

  • Mikkelsen K, Loeschcke V, Kristensen TN (2010) Trait specific consequences of fast and slow inbreeding: lessons from captive populations of Drosophila melanogaster. Conserv Genet 11:479–488

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Pedersen KS, Kristensen TN, Loeschcke V (2005) Effects of inbreeding and rate of inbreeding in Drosophila melanogaster—Hsp70 expression and fitness. J Evol Biol 18:756–762

    Article  PubMed  CAS  Google Scholar 

  • Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Inbreeding and extinction: effects of rate of inbreeding. Conserv Genet 4:405–410

    Article  CAS  Google Scholar 

  • Rumball W, Franklin IR, Frankham R, Sheldon BL (1994) Decline in heterozygosity under full-sib and double first-cousin inbreeding in Drosophila melanogaster. Genetics 136:1039–1049

    PubMed  CAS  Google Scholar 

  • Sezgin E, Duvernell DD, Matzkin LM, Duan YH, Zhu CT, Verrelli BC, Eanes WF (2004) Single-locus latitudinal clines and their relationship to temperate adaptation in metabolic genes and derived alleles in Drosophila melanogaster. Genetics 168:923–931

    Article  PubMed  CAS  Google Scholar 

  • Swindell WR, Bouzat JL (2006a) Reduced inbreeding depression due to historical inbreeding in Drosophila melanogaster: evidence for purging. J Evol Biol 19:1257–1264

    Article  PubMed  CAS  Google Scholar 

  • Swindell WR, Bouzat JL (2006b) Ancestral inbreeding reduces the magnitude of inbreeding depression in Drosophila melanogaster. Evolution 60:762–767

    PubMed  Google Scholar 

  • Swindell WR, Bouzat JL (2006c) Selection and inbreeding depression: effects of inbreeding rate and inbreeding environment. Evolution 60:1014–1022

    PubMed  Google Scholar 

  • Swindell WR, Bouzat JL (2006d) Associations between environmental stress, selection history, and quantitative genetic variation in Drosophila melanogaster. Genetica 127:311–320

    Article  PubMed  Google Scholar 

  • Tiira K, Laurila A, Enberg K, Piironen J, Aikio S, Ranta E, Primmer CR (2006) Do dominants have higher heterozygosity? Social status and genetic variation in brown trout, Salmo trutta. Behav Ecol Sociobiol 59:657–665

    Article  Google Scholar 

  • van Heerwaarden B, Willi Y, Kristensen TN, Hoffmann AA (2008) Population bottlenecks increase additive genetic variance but do not break a selection limit in rain forest Drosophila. Genetics 179:2135–2146

    Article  PubMed  Google Scholar 

  • Waller DM, Dole J, Bersch AJ (2008) Effects of stress and phenotypic variation on inbreeding depression in Brassica rapa. Evolution 62:917–931

    Article  PubMed  Google Scholar 

  • Wang JL, Hill WG, Charlesworth D, Charlesworth B (1999) Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet Res 74:165–178

    Article  PubMed  CAS  Google Scholar 

  • Wilson AJ, Pemberton JM, Pilkington JG, Coltman DW, Mifsud DV, Clutton-Brock TH, Kruuk LEB (2006) Environmental coupling of selection and heritability limits evolution. PLoS Biol 4:1270–1274

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We are grateful to Doth Andersen, Kamilla S. Pedersen and Karina Mikkelsen for excellent laboratory assistance, three anonymous reviewers and R. A. Krebs for constructive comments to earlier versions of the ms. This work was funded by the Danish Natural Research Council with a Steno stipend to TNK and frame grants to VL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Nygaard Kristensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, T.N., Knudsen, M.R. & Loeschcke, V. Slow inbred lines of Drosophila melanogaster express as much inbreeding depression as fast inbred lines under semi-natural conditions. Genetica 139, 441–451 (2011). https://doi.org/10.1007/s10709-011-9563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9563-3

Keywords

Navigation