Skip to main content
Log in

Mitotic and polytene chromosomes analysis of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)

  • SI-Molecular Technologies to Improve SIT
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The Oriental fruit fly, Batrocera dorsalis s.s. (Hendel) is one of the most destructive agricultural pests, belonging to a large group of difficult to distinguish morphologically species, referred as the B. dorsalis complex. We report here a cytogenetic analysis of two laboratory strains of the species and provide a photographic polytene chromosome map from larval salivary glands. The mitotic complement consists of six chromosome pairs including a heteromorphic sex (XX/XY) chromosome pair. Analysis of the polytene complement has shown a total of five polytene chromosomes (10 polytene arms) that correspond to the five autosomes. The most important landmarks of each polytene chromosome and characteristic asynapsis at a specific chromosomal region are presented and discussed. Chromosomal homology between B. dorsalis and Ceratitis capitata has been determined by comparing chromosome banding patterns. The detection of chromosome inversions in both B. dorsalis strains is shown and discussed. Our results show that the polytene maps presented here are suitable for cytogenetic analysis of this species and can be used for comparative studies among species of the Tephritidae family. They also provide a diagnostic tool that could accelerate species identification within the B. dorsalis complex and could shed light on the ongoing speciation in this complex. Polytene chromosome maps can facilitate the development of biological control methods and support the genome mapping project of the species that is currently in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Adsavakulchai A, Baimai V, Prachyabrued W, Grote PJ, Lertlum S (1998) Morphometric study using wing image analysis for identification of the Bactrocera dorsalis complex (Diptera: Tephritidae). WWW J Biol 3:34–43

    Google Scholar 

  • Aketarawong N, Bonizzoni M, Thanaphum S, Gomulski LM, Gasperi G, Malacrida AR, Gugliemino CR (2007) Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel). Mol Ecol 16:3522–3532

    Article  CAS  PubMed  Google Scholar 

  • Armstrong KF, Cameron CM (2000) Species identification of tephritids across a broad taxonomic range using ribosomal DNA. In: Tan KH (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia, Penang, pp 703–710

    Google Scholar 

  • Armstrong KF, Cameron CM, Frampton ER (1997) Fruit fly (Diptera: Tephritidae) species identification: a rapid molecular diagnostic technique for quarantine application. Bull Entomol Res 87:111–118

    Article  CAS  Google Scholar 

  • Ayala FJ, Coluzzi M (2005) Chromosome speciation: Humans, Drosophila and mosquitoes. PNAS 102:6535–6542

    Article  CAS  PubMed  Google Scholar 

  • Baimai V (1998) Heterochromatin accumulation and karyotypic evolution in some dipteran insects. Zool Stud 37:75–88

    Google Scholar 

  • Baimai V, Trinachartvanit W, Tigvattananont S, Grote PJ, Poramarcom R, Kijchalao U (1995) Metaphase karyotypes of fruit flies of Thailand. I. Five sibling species of the Bactrocera dorsalis complex. Genome 38:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Baimai V, Phinchongsakuldit J, Tigvattananont S (1999a) Metaphase karyotypes of fruit flies of Thailand. IV. Evidence for six new species of the Bactrocera dorsalis complex. Cytologia 64:371–377

    Google Scholar 

  • Baimai V, Phinchongsakuldit J, Trinachartvanit W (1999b) Metaphase karyotypes of fruit flies of Thailand (III). Six members of the Bactrocera dorsalis complex. Zool Stud 38:110–118

    Google Scholar 

  • Baimai V, Sumrandee C, Tigvattananont S, Trinachartvanit W (2000) Metaphase karyotypes of fruit flies of Thailand. V. Cytotaxonomy of ten additional new species of the Bactrocera dorsalis complex. Cytologia 65:409–417

    Google Scholar 

  • Bedo DG (1987) Polytene chromosome mapping in Ceratitis capitata (Diptera: Tephritidae). Genome 29:598–611

    Google Scholar 

  • Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A (1999) A transposable element mediated the generation of a Drosophila widespread chromosomal inversion. Science 285:415–418

    Article  PubMed  Google Scholar 

  • Cáceres M, Puig M, Ruiz A (2001) Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 11:1353–1364

    Article  PubMed  Google Scholar 

  • Cáceres C, Segura DF, Vera MT, Wornoayporn W, Cladera JL, Teal P, Sapountzis P, Bourtzis K, Zacharopoulou A, Robinson AS (2009) Incipient speciation revealed in Anastrepha fraterculus by studies on mating compatibility, sex pheromones, hybridisation and cytology. Biol J Linn Soc 97:152–165

    Article  Google Scholar 

  • Carson HL, Yoon JS (1982) Genetics and evolution of Hawaiian Drosophila. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of Drosophila. Academic Press, London, 3b, pp 296–344

  • CDFA (California Department of Food and Agricutlure) (2008) Oriental fruit fly. Pest detection/Emergency projects branch. http://www.cdfa.ca.gov/phpps/pdep/treatment/oriental_ff.html

  • Chen P, Ye H (2008) Relationship among five populations of Bactrocera dorsalis based on mitochondrial DNA sequences in western Yunnan. China J Appl Entomol 132:530–537

    Article  Google Scholar 

  • Clarke AR, Armstrong KF, Carmichel AE, Milne JR, Raghu S, Roderick GK, Yeates DK (2005) Invasive phytophagous pest arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu Rev Entomol 50:293–319

    Article  CAS  PubMed  Google Scholar 

  • Coluzzi M, Sabatini A, Petrarca V, DiDeco MA (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73:483–497

    Article  CAS  PubMed  Google Scholar 

  • Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IHN, Ose K, Fotsing J-M, Sagnon N, Fontenille D, Besansky NJ, Simard F (2009) Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol 9:16

    Article  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Asociates, Sunderland MA

    Google Scholar 

  • della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M (2001) Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol 10:9–18

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky TG (1970) Genetics of the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Drew RAI (1989) The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Mem Qld Mus 26:521

    Google Scholar 

  • Drew RAI, Hancock DL (1994) The Bactocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bull Entomol Res Suppl 2:1–68

    Google Scholar 

  • Drew RAI, Raghu S, Halcoop P (2008) Bridging the morphological and biological species concepts: studies on the Bactrocera dorsalis (Hendel) complex (Diptera: Tephritidae: Dacinae) in South-East Asia. Biol J Linn Soc 93:217–226

    Article  Google Scholar 

  • Dunning Hotopp JC, Clark ME, Oliveira DCSG, Foster JM, Fisher P, Muñoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer form intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  CAS  PubMed  Google Scholar 

  • Eichler EE, Sankoff F (2003) Structural dynamics of eukaryotic chromosome evolution. Science 301:793–797

    Article  CAS  PubMed  Google Scholar 

  • Evgen’ev MB, Zelentsova H, Poluectova H, Lyozin GT, Veleikodvorskaja V, Pyatkov KI, Zhivotovsky LA, Kidwell MG (2000) Mobile elements and chromosomal evolution in the virilis group of Drosophila. PNAS 97:11337–11342

    Article  PubMed  Google Scholar 

  • Feder JL, Roethele JB, Filchak K, Niedbalski J, Romero-Severson J (2003) Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella. Genetics 163(3):939–953

    CAS  PubMed  Google Scholar 

  • Follett PA, McQuate GT (2001) Accelerated development of quarantine treatments for insects on poor hosts. J Econ Entomol 94:1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Franz G (2005) Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, The Netherlands, pp 427–452

    Google Scholar 

  • Garcia-Martinez V, Hernandez-Ortiz E, Zepeta-Cisneros CS, Robinson AS, Zacharopoulou A, Franz G (2009) Mitotic and polytene analysis in the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae). Genome 52:1–11

    Article  Google Scholar 

  • Gariou-Papalexiou A, Gourzi P, Delprat A, Kritikou D, Rapti K, Chrysanthakopoulou B, Mintzas A, Zacharopoulou A (2002) Polytene chromosomes as tools in the genetic analysis of the Mediterranean fruit fly, Ceratitis capitata. Genetica 116:59–71

    Article  CAS  PubMed  Google Scholar 

  • Guelbeogo WM, Grushko O, Boccolini D, Ouédraogo PA, Besansky NJ, Sagnon NF, Costantini C (2005) Chromosomal evidence of incipient speciation in the Afrotropical malaria mosquito Anopheles funestus. Med Vet Entomol 19:46–458

    Article  Google Scholar 

  • Handler AM (2003) Isolation and analysis of a new hopper hAT transposon from the Bactrocera dorsalis white eye strain. Genetica 118:17–24

    Article  CAS  PubMed  Google Scholar 

  • Handler AM, Gomez SP (1997) A new hobo, Ac, Tam3 transposable element, hopper, from Bactrocera dorsalis is distantly related to hobo and Ac. Gene 185:133–135

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AA, Rieseberg LH (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst 39:21–42

    Article  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  CAS  PubMed  Google Scholar 

  • Hunwattanakul N, Baimai V (1994) Mitotic karyotypes of four species of fruit flies (Bactrocera) in Thailand. Kasetsart J (Nat Sci) 28:142–148

    Google Scholar 

  • Jamnongluk W, Kittayapong P, Baimai V, O’Neill S (2002) Wolbachia infections of Tephritid fruit flies: molecular evidence for five distinct strains in a single host species. Curr Microb 45:255–260

    Article  CAS  Google Scholar 

  • Jamnongluk W, Baimai V, Kittayapong P (2003) Molecular evolution of tephritid fruit flies in the genus Bactrocera based on the cytochrome oxidase I gene. Genetica 119:19–25

    Article  CAS  PubMed  Google Scholar 

  • Kounatidis I, Papadopoulos N, Bourtzis K, Mavragani-Tsipidou P (2008) Genetic and cytogenetic analysis of the fruit fly Rhagoletis cerasi (Diptera: Tephritidae). Genome 51:479–491

    Article  PubMed  Google Scholar 

  • Krimbas CB, Powell JR (1992) Drosophila inversion polymorphism. CRC Press, Boca Raton, FL., USA

    Google Scholar 

  • Kulathinal RJ, Stevison LS, Noor MAF (2008) The genomics of speciation in Drosophila: diversity, divergence, and introgression estimated using low-coverage genome sequencing. PLoS Genet 5(7):e1000550

    Article  Google Scholar 

  • Lacovaara S, Saura A (1982) Evolution and speciation in the Drosophila obscura group. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of Drosophila. Academic Press, London, 3b, pp 1–59

  • Lawson AE, McQuire DJ, Yeates DH, Drew RAI, Clarke AR (2003) Dorsalis: an interactive identification tool to fruit flies of the Bactrocera dorsalis complex. CDROM publication, Griffith Univ. Brisbane, Aust

    Google Scholar 

  • Lefevre G (1976) A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila. Academic Press, London, 1a, pp 31–66

  • Lemeunier F, David JR, Tsakas L, Ashburner M (1986) The melanogaster species group. In: Ashburner M, Carson HL, Thopson JN (eds) The genetics and biology of Drosophila. Academic Press, London, 1e, pp 147–256

  • Lyttle TW, Haymer DS (1992) The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster. Genetica 86:113–126

    Article  CAS  PubMed  Google Scholar 

  • Machado CA, Kliman RM, Markert JA, Hey J (2002) Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Mol Biol Evol 19:472–488

    CAS  PubMed  Google Scholar 

  • Machado LPB, Madi-Ravazzi L, Tadei WJ (2006) Reproductive relationships and degree of synapsis in the polytene chromosomes of the Drosophila buzzatti species cluster. Braz J Biol 66:279–293

    Article  CAS  PubMed  Google Scholar 

  • Machado CA, Matzkin LM, Reed LK, Markow TA (2007) Multilocus nuclear sequences reveal intra- and interspecific relationships among chromosomally polymorphic species of cactophilic Drosophila. Mol Ecol 16:3009–3024

    Article  CAS  PubMed  Google Scholar 

  • Malavasi A, van Sauers-Muller A, Midgarden D, Kellman V, Didelot D, Caplong Ph, Ribeiro O (2000) Regional programme for the eradication of the Carambola fruit fly in South America. In: Tan KH (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia, Penang, pp 395–399

    Google Scholar 

  • Mathiopoulos KD, della Torre A, Santolamazza F, Predazzi V, Petrarca V, Coluzzi M (1999) Are chromosomal inversions induced by transposable elements? A paradigm from the malaria mosquito Anopheles gambiae. Parassitol 41:106–129

    Google Scholar 

  • Mau MFA (2007) Bactrocera dorsalis (Hendel). Crop knowledge master. http://www.extento.hawaii.edu/Kbase/Crop/Type/bactro_d.htm

  • Mavragani-Tsipidou P, Karamanlidou G, Zacharopoulou A, Koliais S, Kastritsis C (1992) Mitotic and polytene chromosome analysis in Dacus oleae (Diptera: Tephritidae). Genome 35:373–378

    CAS  PubMed  Google Scholar 

  • McCombs SD, Saul SH (1992) Linkage analysis of genetic markers in the oriental fruit fly. In: McPheron BA, Steck GJ (eds) Fruit fly pests: a world assessment and management. St. Lucie Press, Fl, pp 231–235

    Google Scholar 

  • McCombs SD, Saul SH (1995) Translocation based genetic sexing system for the oriental fruit fly (Diptera-Tephritidae) based on pupal color dimorphism. Ann Entomol Soc Am 88:695–698

    Google Scholar 

  • McInnis DO, Rendon P, Jang E, van Sauers-Muller A, Sugayama R, Malavasi A (1999) Interspecific mating of introduced, sterile Bactrocera dorsalis with wild B. carambolae (Diptera: Tephritidae) in Suriname: a potential case for cross-species sterile insect technique. Ann Entomol Soc Am 92:758–765

    Google Scholar 

  • Muller HJ (1940) Bearings of the Drosophila work on systematics. In: Huxley JS (ed) The new systematics. Oxford University Press (Clarendon), London and New York, pp 185–268

    Google Scholar 

  • Muraji M, Nakahara S (2001) Phylogenetic relationships among fruit flies, Bactrocera (Diptera, Tephritidae), based on mitochondrial rDNA sequences. Insect Mol Biol 10:549–559

    Article  CAS  PubMed  Google Scholar 

  • Muraji M, Nakahara S (2002) Discrimination among pest species of Bactrocera (Diptera: Tephritidae) based on PCR-RFLP of the mitochondrial DNA. Appl Entomol Zool 37:437–446

    Article  CAS  Google Scholar 

  • Naeole CKM, Haymer DS (2003) Use of oligonucleotide arrays for molecular taxonomic studies of closely related species in the oriental fruit fly complex. Mol Ecol Notes 3:662–665

    Article  CAS  Google Scholar 

  • Nakahara S, Tsuchiya T, Sato M, Masaki M, Kaneda M (2000) Research on infestation to many kinds of plants by the pests of quarantine importance. Bactrocera dorsalis complex. Res Bull Plant Prot Serv Jpn 36:53–56

    Google Scholar 

  • Nakahara S, Kato H, Kaneda M, Sugimoto T, Muraji M (2001) Identification of Bactrocera dorsalis complex species (Diptera: Tephritidae) by PCR-RFLP analysis. II. A study of genetic variation in B. dorsalis complex (Philippines population) and B. dorsalis (Taiwan population). Res Bull Plant Prot Serv Jpn 37:69–73

    CAS  Google Scholar 

  • Nakahara S, Kobashigawa Y, Muraji M (2008) Genetic variation among and within populations of the Oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), detected by PCR-RFLP of the mitochondrion control region. Appl Entomol Zool 43:457–465

    Article  CAS  Google Scholar 

  • Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300:321–324

    Article  CAS  PubMed  Google Scholar 

  • Noor MAF, Gratos KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. PNAS 98:12084–12088

    Article  CAS  PubMed  Google Scholar 

  • Noor MAF, Garfield DA, Schaeffer SW, Machado CA (2007) Divergence between the Drosophila pseudoobscura and D. persimilis genome sequences in relation to chromosomal inversions. Genetics 177:1417–1428

    Article  CAS  PubMed  Google Scholar 

  • Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution. Bioess 31:703–714

    Article  CAS  Google Scholar 

  • Ranz JM, Maurin D, Chan YS, Von Grotthuss M, Hillier LW, Roote J, Ashburner M, Bergman CM (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5e152:1369–1381

    Google Scholar 

  • Richards S, Liu Y, Bettencourt BR, Hradecky P et al (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15:1–18

    Article  CAS  PubMed  Google Scholar 

  • Robinson AS, Franz G, Fisher K (1999) Genetic sexing strains in the medfly, Ceratitis capitata: development, mass rearing and field application. Trends Entomol 2:81–104

    Google Scholar 

  • Runcie DE, Noor MAF (2009) Sequence signatures of a recent chromosomal rearrangement in Drosophila mojavensis. Genetica 136:5–11

    Article  CAS  PubMed  Google Scholar 

  • Seewootuthum SI, Permaloo S, Gungah B, Soonnoo AR, Alleck M (2000) Eradication of an exotic fruit fly from Mauritius. In: Tan KH (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia, Penang, pp 389–394

    Google Scholar 

  • Selivon D, Perondini ALP (1997) Evaluation of techniques for C and ASG banding of the mitotic chromosomes of Anastrepha species (Diptera: Tephritidae). Braz J Genet 20:651–653

    Google Scholar 

  • Tan KH (2000) Behaviour and chemical ecology of Bactrocera flies. In: Tan KH (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia, Pulau, Penang, pp 647–656

    Google Scholar 

  • Wee SL, Tan KH (2005) Evidence of natural hybridization between two sympatric sibling species of Bactrocera dorsalis complex based on pheromone analysis. J Chem Ecol 31:845–858

    Article  CAS  PubMed  Google Scholar 

  • White IM, Elson-Harris M (1992) Fruit flies of economic significance: their identification and bionomics. CAB International, Oxford, UK

    Google Scholar 

  • Yu DJ, Xu L, Nardi F, Li JG, Zhang RJ (2007) The complete nucleotide sequence of the mitochondrial genome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Gene 396:66–74

    Article  CAS  PubMed  Google Scholar 

  • Zacharopoulou A (1990) Polytene chromosome maps in the medfly Ceratitis capitata. Genome 33:184–197

    Google Scholar 

  • Zhao JT, Fommer M, Sved J, Zacharopoulou A (1998) Mitotic and polytene chromosome analyses in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). Genome 41:510–526

    Article  CAS  PubMed  Google Scholar 

  • Zhimulev IF, Belyaeva ES, Semeshin VF, Koryakov DE, Demakov SA, Demakova OV, Pokholkova GV, Andreyeva EN (2004) Polytene chromosomes: 70 years of genetic research. Int Rev Cytol 241:203–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work forms part of the Joint FAO/IAEA research programme for the development of improved control methodologies against fruit fly pest species. We would also like to thank the two anonymous reviewers for their significant comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antigone Zacharopoulou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacharopoulou, A., Augustinos, A.A., Sayed, W.A.A. et al. Mitotic and polytene chromosomes analysis of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Genetica 139, 79–90 (2011). https://doi.org/10.1007/s10709-010-9495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9495-3

Keywords

Navigation