Skip to main content
Log in

The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Evidence from in situ hybridizations of DNA from the transposable element hobo to polytene salivary gland chromosome squashes reveals that hobo occupies both cytological breakpoints of three of four endemic inversions sampled from natural populations of Drosophila melanogaster in the Hawaiian islands. The fourth endemic inversion has a single hobo insert at one breakpoint. Cosmopolitan inversions on the same chromosomes do not show this association. Frequencies of both endemic and cosmopolitan inversions in Hawaiian populations fall in ranges typical for natural populations of D. melanogaster sampled worldwide, suggesting that these results may be typical of other regions besides Hawaii. This appears to be the first direct demonstration that transposable elements are responsible for causing specific rearrangements found in nature; consequently, it is also the first direct demonstration that chromosome rearrangements can arise in nature in a manner predicted by results of hybrid dysgenic crosses in the laboratory. Possible population genetic and evolutionary consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajioka, J. W. & W. F. Eanes, 1989. The accumulation of Pelements on the tip of the X chromosome in populations of Drosophila melanogaster. Genet. Res. 53: 1–6.

    Google Scholar 

  • Aquadro, C. F., S. F. Desse, M. M. Bland, C. H. Langley & C. C. Laurie-Ahlberg, 1986. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114: 1165–1190.

    Google Scholar 

  • Ashburner, M., 1989. Drosophila-A Laboratory Handbook and Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Ashburner, M. & F. Leumeunier, 1976. Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). I. Inversion polymorphisms in Drosophila melanogaster and Drosophila simulans. Proc. R. Soc. Lond. B. 193: 137–157.

    Google Scholar 

  • Ault, J. G., Chromosome rearrangement patterns of an SD chromosome (SDKona-2) in Drosophila melanogaster caused by hybrid dysgenesis. Chromosoma.

  • Ault, J. G. & F. Dumapias, 1988. Spontaneous chromosome rearrangements arising in an SD chromosome of Drosophila melanogaster from nature. Genome 30: s31.

  • Belyaeva, E. S., E. V. Ananiev & V. A. Gvozdev, 1984. Distribution of mobile dispersed genes (mdg-1 and mdg-3) in the chromosomes of Drosophila melanogaster. Chromosoma 90: 16–19.

    Google Scholar 

  • Berg, R. L., 1974. A simultaneous mutability arise at the singed locus in two out of three Drosophila melanogaster populations studied in 1973. Dros. Inf. Serv. 51: 100–101.

    Google Scholar 

  • Biémont, C., 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393–397.

    Google Scholar 

  • Biémont, C. & A. Aouar, 1987. Copy-number dependent transpositions and excisions of the Mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58: 39–47.

    Google Scholar 

  • Biémont, C. & C. Gautier, 1988. Localization polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity.

  • Biémont, C., C. Gautier & A. Heizmann, 1988. Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines. Chromosoma 96: 291–294.

    Google Scholar 

  • Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB transposon from Drosophila melanogaster, pp. 485–502 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.

    Google Scholar 

  • Blackman, R. K. & W. M. Gelbart, 1989. The transposable element hobo of Drosophila melanogaster, pp. 523–529 in: Mobile DNA, edited by D. E. Berg and M. M. Howe, American Society for Microbiology Publications, Washington, D.C.

    Google Scholar 

  • Blackman, R. K., R. Grimalia, M. M. D. Koehler & W. M. Gelbart, 1987. Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49: 497–505.

    Google Scholar 

  • Boussy, I. A., M. J. Healy, J. G. Oakeshott & M. G. Kidwell, 1988. Molecular analysis of the P-M gonadal dysgenesis cline in Eastern Australian Drosophila melanogaster. Genetics 119: 889–902.

    Google Scholar 

  • Brégliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in: Mobile Genetic elements, edited by J. A. Shapiro, Academic Press, New York.

    Google Scholar 

  • Bucheton, A., R. Paro, H. M. Sang, A. Pelisson & D. J. Finnegan, 1984. The molecular basis of I-R hybrid dysgenesis: identification, cloning and properties of the I factor. Cell 38: 155–163.

    Google Scholar 

  • Bucheton, A., M. Simonelig, C. Vaury & M. Crozatier, 1986. Sequences similar to the I transposable element involved in I-R hybrid dysgenesis in D. melanogaster occur in other Drosophila species. Nature 322: 650–652.

    Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Google Scholar 

  • Charlesworth, B. & A. Lapid, 1989. A study of ten families of transposable elements of X chromosomes from a population of D. melanogaster. Genet. Res. 54: 112–125.

    Google Scholar 

  • Coyne, J. A., 1989. A test of the role of meiotic drive in fixing a pericentric inversion. Genetics 123: 241–243.

    Google Scholar 

  • Daniels, S. B., A. Chovnick & I. A. Boussy, 1990. Distribution of hobo transposable elements in the genus Drosophila. Mol. Biol. Evol. 7: 589–606.

    Google Scholar 

  • Dowsett, A. P. & M. W. Young, 1982. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc. Natl. Acad. Sci. 79: 4570–4574.

    Google Scholar 

  • Eggleston, W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331: 368–370.

    Google Scholar 

  • Engels, W. R., 1983. The P family of transposable elements in Drosophila. Ann. Rev. Genet. 17: 315–344.

    Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila, pp. 437–484 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.

    Google Scholar 

  • Engels, W. R. & C. R. Preston, 1981. Identifying P factors in Drosophila by means of chromosome breakage hotspots. Cell 26: 421–428.

    Google Scholar 

  • Engels, W. R. & C. R. Preston, 1984. Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107: 657–678.

    Google Scholar 

  • Finnegan, D. J., 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, pp. 503–517 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.

    Google Scholar 

  • Gerasimova, T. I., L. J. Mizrokhi & G. P. Georgiev, 1984. Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309: 714–716.

    Google Scholar 

  • Green, M. M., 1976. Mutable and mutator loci, pp. 929–946 in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, London/New York.

    Google Scholar 

  • Haigh, J., 1978. The accumulation of deleterious genes in a population — Muller's ratchet. Theor. Pop. Biol. 14: 251–267.

    Google Scholar 

  • Hartl, D. L. & Y. Hiraizumi, 1976. Segregation distortion, pp. 615–666 in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, New York/London.

    Google Scholar 

  • Hedrick, P. W., 1981. The establishment of chromosomal variants. Evolution 35: 322–332.

    Google Scholar 

  • Hinton, C., 1979. Two mutators and their suppressors in D. ananassae. Genetics 92: 1153–1171.

    Google Scholar 

  • Ish-Horowicz, D., 1982. Transposable elements, hybrid incompatibility and speciation. Nature 229: 676–677.

    Google Scholar 

  • Ives, P. T., 1950. The importance of mutation rate genes in evolution. Evolution 4: 236–252.

    Google Scholar 

  • Jackson, M. S., D. M. Black & G. A. Dover, 1988. Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster.

  • Knibb, W. R., J. G. Oakeshott & J. B. Gibson, 1981. Chromosome inversion polymorphisms in Drosophila melanogaster. I. Latitudinal clines and associations between inversions in Australian populations. Genetics 98: 833–847.

    Google Scholar 

  • Lande, R., 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33; 234–251.

    Google Scholar 

  • Langley, C. H., E. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–235.

    Google Scholar 

  • Lefevre, G., 1976. A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands, pp. in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, New York/London.

    Google Scholar 

  • Leigh-Brown, A. J. & J. E. Moss, 1987. Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res. 49: 121–128.

    Google Scholar 

  • Lemeunier, F., J. R. David, L. Tsacas & M. Ashburner, 1986. The melanogaster species group, pp. 148–257 in: The Genetics and Biology of Drosophila, edited by M. Ashburner, H. L. Carson and J. N. J. Thompson, Academic Press, New York/London.

    Google Scholar 

  • Levitan, M., 1962. Spontaneous chromosome aberrations in Drosophila robusta. Proc. Natl. Acad. Sci. 48: 930–937.

    Google Scholar 

  • Lewis, A. P. & J. F. Y. Brookfield, 1987. Movement of transposable elements other than P elements in a P-M hybrid dysgenic cross. Mol. Gen. Genet. 208: 506–510.

    Google Scholar 

  • Lim, J., 1988. Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. 85: 9153–9157.

    Google Scholar 

  • Louis, C. & G. Yannopoulos, 1988. The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster, pp. 205–250 in: Oxford Survey in Eukaryotic Genes, edited by D. J. Finnegan, Oxford University Press, Oxford.

    Google Scholar 

  • Lyttle, T. W., 1989. Is there a role for meiotic drive in karyotype evolution?, pp. in: Genetics, Speciation, and the Founder Principle, edited by L. V. Giddings, K. Y. Kaneshiro and W. W. Anderson, Oxford University Press. New York/Oxford.

    Google Scholar 

  • Lyttle, T. W., 1991. Segregation distorters. Ann. Rev. Genet. 25: 511–557.

    Google Scholar 

  • Maniatis, T., E. F. Fritsch & J. Sambrook, 1982. Molecular Cloning. A laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Mettler, L. E., R. A. Voelker & T. Mukai, 1977. Inversion clines in natural populations of Drosophila melanogaster. Genetics 87: 169–176.

    Google Scholar 

  • Monastirioti, M., P. Hatzopoulos, N. Stamatis, G. Yannopoulos & C. Louis, 1988. Cohabitation of KP and full-length P elements in the genome of strains of Drosophila melanogaster inducing P-M-like hybrid dysgenesis. Mol. Gen. Genet. 215: 94–99.

    Google Scholar 

  • Montgomery, E. A. & C. H. Langley, 1983. Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104: 473–483.

    Google Scholar 

  • Montgomery, W. A., B. Charlesworth & C. B. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.

    Google Scholar 

  • Naveira, H. & A. Fontdevila, 1985. The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma 91: 87–94.

    Google Scholar 

  • Pascual, L. & G. Périquet, 1991. Distribution of hobo transposable elements in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 8: 282–296.

    Google Scholar 

  • Périquet, G., M. H. Hamelin, Y. Bigot & K. Hu, 1989. Presence of the deleted hobo element Th in Eurasian populations of Drosophila melanogaster. Genet. Sel. Evol. 21: 107–111.

    Google Scholar 

  • Périquet, G., M. H. Hamelin, R. Kalmes & J. Eeken, 1990. Hobo elements and their deletion-derivative sequences in D. melanogaster and its sibling species D. simulans, D. mauritiana and D. sechellia. Genet. Sel. Evol. 22: 393–402.

    Google Scholar 

  • Potter, S. S., W. J. J. Brorein, P. Dunsmuir & G. M. Rubin, 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17: 415–427.

    Google Scholar 

  • Ronsseray, S. & D. Anxolabéhère, 1987. Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster, Chromosoma 94: 433–440.

    Google Scholar 

  • Rubin, G. M., 1983. Dispersed repetitive DNAs in Drosophila, pp. 329–361 in. Mobile Genetic Elements, edited by J. A. Shapiro, Academic Press, New York.

    Google Scholar 

  • Simmons, M. G., 1986. Gonadal dysgenesis determinants in a natural population of Drosophila melanogaster. Genetics 114: 897–918.

    Google Scholar 

  • Stalker, H. D., 1980. Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing loading and flight activity. Genetics 95: 211–223.

    Google Scholar 

  • Stamatis, N., M. Monastirioti, G. Yannopoulos & C. Louis, 1989. The P-M and the 23.5 MRF (hobo) systems of hybrid dysgenesis in Drosophila melanogaster are independent of each other. Genetics 123: 379–387.

    Google Scholar 

  • Streck, R. D., J. E. MacGaffey & S. K. Beckendorf, 1986. The structure of hobo transposable elements and their site of insertion. EMBO J. 5: 3615–3623.

    Google Scholar 

  • Strobel, E., P. Dunsmuir & G. M. Rubin, 1979. Polymorphisms in the chromosomal locations of elements of the 412, copia, and 297 dispersed repeat families in Drosophila. Cell 17: 429–439.

    Google Scholar 

  • Temin, R. G., B. Ganetzky, P. A. Powers, T. W. Lyttle, S. Pimpinelli, C.-I. Wu & Y. Hiraizumi, 1991. Segregation distorter (SD) in Drosophila melanogaster. Am. Nat. 137: 287–331.

    Google Scholar 

  • Throckmorton, L. H., 1975. The phylogeny, ecology and geography of Drosophila, pp. 421–469 in. Handbook of Genetics, vol. 3: Invertebrates of genetic interest, edited by R. C. King, Plenum, New York.

    Google Scholar 

  • Voelker, R. A., 1974. The genetics and cytology of a mutator factor in Drosophila melanogaster. Mut. Res. 22: 265–276.

    Google Scholar 

  • Voelker, R. A., T. Mukai & F. M. Johnson, 1977. Genetic variation in populations of Drosophila melanogaster from the western United States. Genetica 47: 143–148.

    Google Scholar 

  • White, M. J. D., 1978. Modes of Speciation, W. H. Freeman, San Francisco.

    Google Scholar 

  • Yamaguchi, O. & T. Mukai, 1974. Variation of spontaneous occurrence rates of chromosomal aberrations in the second chromosomes of Drosophila melanogaster. Genetics 78: 1209–1221.

    Google Scholar 

  • Yannapoulos, G. & N. Stamatis, 1987. Positive correlation between the occurrence of chromosome breakage and the induction of point mutations associated with male recombination 31.1 MRF system of hybrid dysgenesis in Drosophila melanogaster. Mutat. Res. 176: 37–45.

    Google Scholar 

  • Yannopoulos, G., N. Stamatis & J. C. J. Eeken, 1986. Differences in the cytotype and hybrid dysgenesis inducing abilities of different P strains of Drosophila melanogaster. Experientia 42: 1283–1285.

    Google Scholar 

  • Yannopoulos, G., N. Stamatis, M. Monastirioti, P. Hatzopoulos & C. Louis. 1987. Hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF Cell 49: 487–495.

    Google Scholar 

  • Yannopoulos, G., A. Zacharopoulou & N. Stamatis, 1982. Unstable chromosome rearrangements associated with male recombination in Drosophila melanogaster. Mutat. Res. 96: 41–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyttle, T.W., Haymer, D.S. The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster . Genetica 86, 113–126 (1992). https://doi.org/10.1007/BF00133715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133715

Keywords

Navigation