Skip to main content

Advertisement

Log in

Structural and expressional analysis of the B-hordein genes in Tibetan hull-less barley

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The B-hordein gene family was analyzed from two Tibetan hull-less barley cultivars Z09 and Z26 (Hordeum vulgare subsp. vulgare). Fourteen B-hordein genes, designated BZ09-2 to BZ09-5 (from Z09) and BZ26-1 to BZ26-10 (from Z26), were sequenced. Seven of them, similar to a previously reported BZ09-1 from Z09, were predicted to encode putative active proteins each with a signal peptide, a repetitive domain, and a C-terminal region; seven of them were predicted to be pseudogenes. The B-hordein gene family was analyzed using all known representatives of B-hordein sequences and two most similar LMW-GSs of Triticum aestivum. Alignment of these seven putative proteins with known B-hordeins and two most similar LMW-GSs of T. aestivum revealed that they shared a common motif. A large variation was observed between numbers of repeat units of predicted B-hordeins of Z26 and Z09. Phylogenetic analysis revealed that all BZ26 clones were clustered in a subgroup, and BZ09-1 formed another subgroup by itself in the putative eight active genes. In addition, six 5′-upstream regulatory sequences of the B-hordein genes were isolated from the two accessions by a single oligonucleotide nested PCR, and several different mutations were identified in the cis-acting element GLM and two distinctive sequences (Z09P-2 and Z26P-3). Phylogenetic analysis of 5′-upstream regulatory regions of the B-hordein genes showed that members from the same accession were clustered together except for two distinct members. Quantitative real time PCR analysis indicated distinct expression levels of B-hordein genes in four developing stages of developing grains in two accessions. These findings suggest B-hordein genes have intrinsic differences between accessions, and this knowledge will be useful for incorporating the B-hordeins protein in barley breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson OD, Greene FC (1997) The α-gliadin gene family II DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:9–65

    Google Scholar 

  • Anderson OD, Hsia CC, Torres V (2001) The wheat gamma-gliadin genes: characterization of ten new sequences and further understanding of gamma-gliadin gene family structure. Theor Appl Genet 103:323–330

    Article  CAS  Google Scholar 

  • Antal Z, Rascle C, Fevre M et al (2004) Single oligonucleotide nested PCR: a rapid method for the isolation of genes and their flanking regions from expressed sequence tags. Curr Genet 46:240–246

    Article  CAS  PubMed  Google Scholar 

  • Atanassov P, Borries C, Zahrieva M et al (2001) Hordein polymorphism and variation of agromorphologicaltraits in a collection of naked barley. Genet Resour Crop Evol 48:353–360

    Article  Google Scholar 

  • Bevan M, Colot V, Hammond-Kosack M et al (1993) Transcriptional control of plant storage protein genes. Phil Trans R Soc Lond B 342:209–215

    Article  CAS  Google Scholar 

  • Brandt A, Montembault A, Cameron-mills V (1985) Primary structure of a B1-hordein gene from barley. Carlsberg Res Commun 50:333–345

    Article  CAS  Google Scholar 

  • Cassidy BG, Dvorak J, Anderson OD (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet 96:743–750

    Article  CAS  Google Scholar 

  • D’Ovidio R, Masci S (2004) The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 39:321–339

    Article  Google Scholar 

  • Davies JT, Shewry PR, Harris N (1993) Spatial and temporal patterns of B hordein synthesis in developing barley (Hordeum vulgare L.) caryopses. Cell Biol Int 17:195–203

    Article  CAS  Google Scholar 

  • De-Bustos A, Rubio P, Jouve N (2000) Molecular characterization of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenin of wheat. Theor Appl Genet 100:1085–1094

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Edney MJ, Langrell DE (2004) Evaluating the malting quality of hulless CDC Dawn, acid-dehusked Harrington, and Harrington barley. J Am Soc Brew Chem 62(1):18–22

    CAS  Google Scholar 

  • Forde BG, Heyworth A, Pywell J et al (1985a) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Necleic Acids Res 13:7327–7339

    Article  CAS  Google Scholar 

  • Forde BG, Kreis M, Williamson MS et al (1985b) Short tandem repeats shared by B- and C-hordein cDNAs suggested a common evolutionary origin for two groups of cereal storage protein genes. EMBO J 4:9–15

    CAS  PubMed  Google Scholar 

  • Furtado A, Henry RJ, Pellegrineschi A (2009) Analysis of promoters in transgenic barley and wheat. Plant Biotechnol J 7:240–253

    Article  CAS  PubMed  Google Scholar 

  • Gupta RB, Macritchie F (1994) Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3, and Gli-1 of common wheat. II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci 19:19–29

    Article  CAS  Google Scholar 

  • Gupta RB, Paul JG, Cornish GB et al (1994) Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3, and Gli-1, of common wheats. I. Its additive and interaction effects on dough properties. J Cereal Sci 19:9–17

    Article  CAS  Google Scholar 

  • Han ZX, Qian G, Wu F et al (2006) Cloning and characterization of four B-hordein genes from Tibetan hull-less barley (Hordeum vulgare subsp. vulgare). Acta Genetica Sinica 33:948–956

    Article  Google Scholar 

  • Han ZX, Wu F, Zhao T et al (2007) Cloning of B-hordein gene 5′ upstream regulation sequence in highland barley and sequence analysis. J Triticeae Crops 27(4):613–618

    CAS  Google Scholar 

  • Han ZX, Qian G, Wu F et al (2008) Sequences variation and classification of B-hordein genes in hull-less barley from Qinghai–Tibet Plateau. Mol Biol 42(1):56–63

    CAS  Google Scholar 

  • Holdsworth MJ, Muñoz-Blanco J, Hammond-Kosack M et al (1995) The maize transcription factor Opaque-2 activates a wheat glutenin promoter in plant and yeast cells. Plant Mol Biol 29(4):711–720

    Article  CAS  PubMed  Google Scholar 

  • Hsia CC, Anderson OD (2001) Isolation and characterization of wheat ω-gliadin genes. Ther Appl Genet 103:37–44

    Article  CAS  Google Scholar 

  • Kreis M, Rahman S, Forde B et al (1983) Sub-families of hordein mRNA encoded at the hor 2 locus of barley. Mol Gen Genet 191:194–200

    Article  CAS  Google Scholar 

  • Kreis M, Shewry PR, Forde BG et al (1984) Molecular analysis of the effects of the lys3a gene on the expression of Hor loci in developing endosperms of barley (Hordeum vulgare L.) Biochem Genet 22:222–231

    Google Scholar 

  • Kwok S, Kellogg DE, McKinney N et al (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Lehfer H, Busch W, Martin R et al (1993) Localization of the B-hordein locus on barley chromosomes using fluorescence in situ hybridization. Chromosoma 102:428–432

    Article  Google Scholar 

  • Liu CT, Wesenberg DM, Hunt CW et al (1996) Hulless barley: a new look for barley in Idaho. [on line] available: http://info.ag.uidaho.edu/resources/PDFs/CIS1050.pdf

  • Luan YF, He Y (2004) Tendency and counter measures on breeds improvement of Tibet highland barley. Barley Sci 12:1–4

    Google Scholar 

  • Marris C, Gallois P, Copley J (1988) The 5′ flanking region of a barley B hordein gene controls tissue and developmental specific CAT expression in tobacco plants. Plant Mol Biol 10:359–366

    Article  CAS  Google Scholar 

  • Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Molina-Cano JL, Sopena A, Polo JP et al (2002) Relationships between barley hordeins and malting quality in a mutant of cv. Triumph. II. Genetic and environmental effects on water uptake. J Cereal Sci 36:39–50

    Article  CAS  Google Scholar 

  • Munck L, Moller L, Jacobsen S et al (2004) Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1–3, 1–4)-β-glucan in barley. J Cereal Sci 40:213–222

    Article  CAS  Google Scholar 

  • Nimazhaxi (1998) Hull-less barley and food safety in the region of plateau. Tibetan Agric Technol 20:20–25

    Google Scholar 

  • Oñate L, Vicente-Carbajosa J, Lara P (1999) Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm. J Biol Chem 274:9175–9182

    Article  PubMed  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage protein and the effect of allelic variation on bread-making quality. Ann Rev Plant Physiol 38:141–153

    Article  CAS  Google Scholar 

  • Peltonen J, Rita H, Aikasalo R et al (1994) Hordein and malting quality in northern barleys. Hereditas 120:231–239

    Article  CAS  Google Scholar 

  • Piston F, Dorado G, Martin A et al (2005) Cloning and molecular characterization of B-hordeins from Hordeum chilense Roem et Schult. Theor Appl Genet 111:551–560

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Kreis M, Forde BG et al (1984) Hordein-gene expression during development of the barley (Hordeum vulgare) endosperm. Biochem J 223:315–322

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamine storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12

    CAS  PubMed  Google Scholar 

  • Shewry P, Napier J, Tatham A (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    Article  CAS  PubMed  Google Scholar 

  • Suprunova T, Krugman T, Fahima T et al (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308

    Article  CAS  Google Scholar 

  • Takahashi R (1955) The origin and evolution of cultivated barley. Adv Genet 7:227–266

    Article  Google Scholar 

  • Taketa S, Kikuchi S, Awayama T et al (2004) Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene. nud. Theor Appl Genet 108:1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tatham A, Shewry P (1995) The S-poor prolamins of wheat, barley and rye. J Cereal Sci 22:1–16

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-speciWc gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Carbajosa J, Beritashvili DR, Kraev AS et al (1992) Conserved structure and organization of B hordein genes in the Hor2 locus of barley. Plant Mol Biol 18:453–458

    Google Scholar 

  • Yanagisawa S (1995) A novel DNA binding domain that may form a single zinc finger motif. Nucleic Acids Res 23:3403–3410

    Article  CAS  PubMed  Google Scholar 

  • Zadoks J, Chang T, Konzak C (1974) Decimal code for growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang Q, Maroof MS, Yang G et al (1992) Ribosomal DNA polymorphisms and the Oriental-Occidental genetic differentiation in cultivated barley. Theor Appl Genet 84:682–687

    Article  Google Scholar 

  • Zhang W, Gianibelli MC, Ma W et al (2003) Identification of SNPs and development of allele-specific PCR markers for γ-gliadin alleles in Triticum aestivum. Theor Appl Genet 107:130–138

    Article  CAS  PubMed  Google Scholar 

  • Zhao XL, Xia XC, He ZH et al (2006) Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor Appl Genet 113:1247–1259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Special Basic Research Funds of the Ministry of Science and Technology of China (2006FY110700) and the National Science and Technology Supporting Programs (2006BAD13B02-13). The authors are thankful for the cooperation between USDA-ARS Dale Bumpers National Rice Research Center and Chengdu Institute of Biology, The Chinese Academy of Sciences. For proofreading the authors are thankful to Ellen McWhirter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maoqun Yu or Yulin Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Z., Wu, F., Deng, G. et al. Structural and expressional analysis of the B-hordein genes in Tibetan hull-less barley. Genetica 138, 227–239 (2010). https://doi.org/10.1007/s10709-009-9415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9415-6

Keywords

Navigation