Skip to main content
Log in

Characterising functionally important and ecologically meaningful genetic diversity using a candidate gene approach

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Over the past two decades the fields of molecular ecology and population genetics have been dominated by the use of putatively neutral DNA markers, primarily to resolve spatio-temporal patterns of genetic variation to inform our understanding of population structure, gene flow and pedigree. Recent emphasis in comparative functional genomics, however, has fuelled a resurgence of interest in functionally important genetic variation that underpins phenotypic traits of adaptive or ecological significance. It may prove a major challenge to transfer genomics information from classical model species to examine functional diversity in non-model species in natural populations, but already multiple gene-targeted candidate loci with major effect on phenotype and fitness have been identified. Here we briefly describe some of the research strategies used for isolating and characterising functional genetic diversity at candidate gene-targeted loci, and illustrate the efficacy of some of these approaches using our own studies on red grouse (Lagopus lagopus scoticus). We then review how candidate gene markers have been used to: (1) quantify genetic diversity among populations to identify those depauperate in genetic diversity and requiring specific management action; (2) identify the strength and mode of selection operating on individuals within natural populations; and (3) understand direct mechanistic links between allelic variation at single genes and variance in individual fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305:1462–1465. doi:10.1126/science.1098095

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442:563–567

    CAS  PubMed  Google Scholar 

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494. doi:10.1073/pnas.0306582101

    CAS  PubMed  Google Scholar 

  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    CAS  PubMed  Google Scholar 

  • Arkush KD, Giese AR, Mendonca HL, McBride AM, Marty GD, Hedrick PW (2002) Resistance to three pathogens in the endangered winter-run chinook salmon (Oncorhynchus tshawytscha): effects of inbreeding and major histocompatibility complex genotypes. Can J Fish Aquat Sci 59:966–975. doi:10.1139/f02-066

    Google Scholar 

  • Arostegui JI, Gallardo D, Rodriguez-Luaces M, Querol S, Madrigal JA, Garcia-Lopez J et al (2000) Genomic typing of minor histocompatibility antigen HA-1 by reference strand mediated conformation analysis (RSCA). Tissue Antigens 56:69–76. doi:10.1034/j.1399-0039.2000.560109.x

    CAS  PubMed  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Baudry E, Desmadril M, Werren H (2006) Rapid adaptive evolution of the tumor suppressor gene Pten in an insect lineage. J Mol Evol 62:738–744

    CAS  PubMed  Google Scholar 

  • Beebee T, Rowe G (2004) An introduction to molecular ecology. OUP, Oxford

    Google Scholar 

  • Behnke JM, Iraqi F, Menge D, Baker RL, Gibson J, Wakelin D (2003) Chasing the genes that control resistance to gastrointestinal nematodes. J Helminthol 77:99–109. doi:10.1079/JOH2003174

    CAS  PubMed  Google Scholar 

  • Ben-Shahar Y (2005) The foraging gene, behavioral plasticity, and honeybee division of labor. J Comparative Physiol—Neuroethol Sens Neural Behav Physiol 191:987–994

    CAS  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377. doi:10.1046/j.1420-9101.2003.00531.x

    CAS  PubMed  Google Scholar 

  • Bierne N, Eyre-Walker A (2003) The problem of counting sites in the estimation of the synonymous and nonsynonymous substitution rates: implications for the correlation between the synonymous substitution rate and codon usage bias. Genetics 165:1587–1597

    PubMed  Google Scholar 

  • Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256

    Google Scholar 

  • Case RAJ, Hutchinson WF, Hauser L, Buehler V, Clemmesen C, Dahle G, Kjesbu OS, Moksness E, Ottera H, Paulsen H, Svasand T, Thorsen A, Carvalho GR (2006) Association between growth and Pan I* genotype within Atlantic cod full-sibling families. Trans Am Fish Soc 135:241–250

    CAS  Google Scholar 

  • Chang ML, Terrill RL, Bautista MM, Carlson EJ, Dyer DJ, Overall KL et al (2007) Large-scale SNP genotyping with canine buccal swab DNA. J Hered 98:428–437. doi:10.1093/jhered/esm044

    CAS  PubMed  Google Scholar 

  • Coltman DW, Wilson K, Pilkington JG, Stear MJ, Pemberton JM (2001) A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 122:571–582

    CAS  PubMed  Google Scholar 

  • Cork JM, Purugganan MD (2004) The evolution of molecular genetic pathways and networks. Bioessays 26:479–484. doi:10.1002/bies.20026

    CAS  PubMed  Google Scholar 

  • Cossins A, Fraser J, Hughes M, Gracey A (2006) Post-genomic approaches to understanding the mechanisms of environmentally induced phenotypic plasticity. J Exp Biol 209:2328–2336. doi:10.1242/jeb.02256

    CAS  PubMed  Google Scholar 

  • de la Fuente J, Kocan KM, Almazan C, Blouin EF (2007) RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 23:427–433. doi:10.1016/j.pt.2007.07.002

    Google Scholar 

  • Deane EE, Woo NYS (2004) Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). American Journal of Physiology— Regulatory Integrative and Comparative Physiology, 287

  • Diez-Tascon C, Keane OM, Wilson T, Zadissa A, Hyndman DL, Baird DB et al (2005) Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiol Genomics 21:59–69. doi:10.1152/physiolgenomics.00257.2004

    CAS  PubMed  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52. doi:10.1038/256050a0

    CAS  PubMed  Google Scholar 

  • Dorit RL, Ohara O, Gilbert W (1993) One-sided anchored polymerase chain-reaction for amplification and sequencing of complementary-DNA. Methods Enzymol 218:36–47. doi:10.1016/0076-6879(93)18006-X

    CAS  PubMed  Google Scholar 

  • Edwards SV, Potts WK (1996) Polymorphism of Mhc genes: implications for conservation genetics of vertebrates. In: Smith TB, Wayne RK (eds) Molecular genetic approaches to conservation. Oxford University Press, Oxford, pp 214–237

    Google Scholar 

  • Edwards SV, Grahn M, Potts WK (1995) Dynamics of mhc evolution in birds and crocodilians—amplification of class-ii genes with degenerate primers. Mol Ecol 4:719–729. doi:10.1111/j.1365-294X.1995.tb00272.x

    CAS  PubMed  Google Scholar 

  • Edwards SV, Nusser J, Gasper J (2000) Characterization and evolution of Mhc genes from non-model organisms, with examples from birds. In: Baker AJ (ed) Molecular methods in ecology. Blackwell Scientific, Cambridge, pp 168–207

    Google Scholar 

  • Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112. doi:10.1016/0040-5809(72)90035-4

    CAS  PubMed  Google Scholar 

  • Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends Ecol Evol 21:569–575. doi:10.1016/j.tree.2006.06.015

    PubMed  Google Scholar 

  • Feder ME, Walser J-C (2005) The biological limitations of transcriptomics in elucidating stress and stress reponses. J Evol Biol 18:901–910. doi:10.1111/j.1420-9101.2005.00921.x

    CAS  PubMed  Google Scholar 

  • Ferraris JD, Palumbi SR (eds) (1996) Molecular zoology. Wiley, New York

    Google Scholar 

  • Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LEM, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends Ecol Evol 20:96–104

    PubMed  Google Scholar 

  • Ford MJ (2002) Applications of selective neutrality tests to molecular ecology. Mol Ecol 11:1245–1262. doi:10.1046/j.1365-294X.2002.01536.x

    CAS  PubMed  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–149. doi:10.1016/j.biocon.2005.05.002

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) An introduction to conservation genetics. CUP, Cambridge

    Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    CAS  PubMed  Google Scholar 

  • Garrigan D, Hedrick PN (2001) Class I MHC polymorphism and evolution in endangered California Chinook and other Pacific salmon. Immunogenetics 53:483–489. doi:10.1007/s002510100352

    CAS  PubMed  Google Scholar 

  • Garrigan D, Hedrick PW (2003a) Detecting adaptive molecular polymorphism: lessons from the MHC. Evolution Int J Org Evolution 57:1707–1722

    CAS  Google Scholar 

  • Garrigan D, Hedrick PW (2003b) Perspective: detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution Int J Org Evolution 57:1707–1722

    CAS  Google Scholar 

  • Gotzek D, Ross KG (2007) Genetic regulation of colony social organization in fire ants: an integrative overview. Q Rev Biol 82:201–226

    PubMed  Google Scholar 

  • Gracey A, Cossins A (2003) Application of microarray technology in environmental and comparative physiology. Annu Rev Physiol 65:231–259. doi:10.1146/annurev.physiol.65.092101.142716

    CAS  PubMed  Google Scholar 

  • Gratten J, Beraldi D, Lowder BV, McRae AF, Visscher PM, Pemberton JM, Slate J (2007) Compelling evidence that a single nucleotide substitution in TYRP1 is responsible for coat-colour polymorphism in a free-living population of Soay sheep. Proc R Soc Lond B Biol Sci 274:619–626

    CAS  Google Scholar 

  • Gunther E, Walter L (2001) The major histocompatibility complex of the rat (Rattus norvegicus). Immunogenetics 53:520–542. doi:10.1007/s002510100361

    CAS  PubMed  Google Scholar 

  • Gutierrez-Espeleta GA, Hedrick PW, Kalinowski ST, Garrigan D, Boyce WM (2001) Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation? Heredity 86:439–450. doi:10.1046/j.1365-2540.2001.00853.x

    CAS  PubMed  Google Scholar 

  • Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc R Soc Lond B Biol Sci 272:2449–2456

    Google Scholar 

  • Hambuch TM, Lacey EA (2002) Enhanced selection for MHC diversity in social tuco-tucos. Evolution Int J Org Evolution 56:841–845

    Google Scholar 

  • Hecker KH (2002) Automated, high-accuracy mutation screening with the WAVE (R) nucleic acid fragment analysis system. In: Biomedical nanotechnology architectures and applications. SPIE, Bellingham, USA, pp 298–307

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution Int J Org Evolution 53:313–318. doi:10.2307/2640768

    Google Scholar 

  • Hedrick PW (2004) Recent developments in conservation genetics. For Ecol Manage 197:3–19. doi:10.1016/j.foreco.2004.05.002

    Google Scholar 

  • Hedrick PW, Parker KM, Gutierrez-Espeleta GA, Rattink A, Lievers K (2000) Major histocompatibility complex variation in the Arabian oryx. Evolution Int J Org Evolution 54:2145–2151

    CAS  Google Scholar 

  • Hickey DA, McLean MD (1980) Selection for ethanol tolerance and Adh allozymes in natural populations of Drosophila melanogaster. Genet Res 36:11–15

    CAS  PubMed  Google Scholar 

  • Hilbish TJ, Koehn RK (1985) The physiological basis of natural selection at the LAP locus. Evolution Int J Org Evolution 39:1302–1317. doi:10.2307/2408787

    Google Scholar 

  • Hill RE, Hastie ND (1987) Accelerated evolution in the reactive center regions of serine protease inhibitors. Nature 326:96–99. doi:10.1038/326096a0

    CAS  PubMed  Google Scholar 

  • Hinten GN, Hale MC, Gratten J, Mossman JA, Lowder BV, Mann MK et al (2007) SNP-SCALE: SNP scoring by colour and length exclusion. Mol Ecol Notes 7:377–388. doi:10.1111/j.1471-8286.2006.01648.x

    CAS  Google Scholar 

  • Hoekstra HE (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97:222–234. doi:10.1038/sj.hdy.6800861

    CAS  PubMed  Google Scholar 

  • Hoekstra HE, Nachman MW (2003) Different genes underlie adaptive melanism in different populations of rock pocket mice. Mol Ecol 12:1185–1194. doi:10.1046/j.1365-294X.2003.01788.x

    CAS  PubMed  Google Scholar 

  • Hoelzel AR, Stephens JC, O’Brien SJ (1999) Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. Mol Biol Evol 16:611–618

    CAS  PubMed  Google Scholar 

  • Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256–2258. doi:10.1126/science.282.5397.2256

    CAS  PubMed  Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York

    Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex Class-I loci reveals overdominant selection. Nature 335:167–170. doi:10.1038/335167a0

    CAS  PubMed  Google Scholar 

  • Hughes JM, Zalucki MP (1993) The relationship between the pgi locus and the ability to fly at low temperatures in the monarch butterfly Danaus plexippus. Biochem Genet 31:521–532. doi:10.1007/BF02426883

    CAS  PubMed  Google Scholar 

  • Hurt P, Walter L, Sudbrak R, Klages S, Muller I, Shiina T et al (2004) The genomic sequence and comparative analysis of the rat major histocompatibility complex. Genome Res 14:631–639. doi:10.1101/gr.1987704

    CAS  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391. doi:10.1016/S0168-9525(01)02310-1

    CAS  PubMed  Google Scholar 

  • Kaufman J, Milne S, Gobel TWF, Walker BA, Jacob JP, Zoorob R et al (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925. doi:10.1038/44856

    CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, New York

    Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116. doi:10.1126/science.1090005

    CAS  PubMed  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex, vol 1. Wiley, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  • Kreitman M (2000) Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet 1:539–559. doi:10.1146/annurev.genom.1.1.539

    CAS  PubMed  Google Scholar 

  • Kreitman M, Akashi H (1995) Molecular evidence for natural-selection. Annu Rev Ecol Syst 26:403–422. doi:10.1146/annurev.es.26.110195.002155

    Google Scholar 

  • Kronforst MR, Young LG, Kapan DD, McNeely C, O’Neill RJ, Gilbert LE (2006) Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc Natl Acad Sci USA 103:6575–6580

    CAS  PubMed  Google Scholar 

  • Kuniyoshi H, Fukui Y, Sakai Y (2006) Cloning of full-length cDNA of teleost corticotropin-releasing hormone precursor by improved inverse PCR. Biosci Biotechnol Biochem 70:1983–1986. doi:10.1271/bbb.60067

    CAS  PubMed  Google Scholar 

  • Landry C, Bernatchez L (2001) Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol Ecol 10:2525–2539. doi:10.1046/j.1365-294X.2001.01383.x

    CAS  PubMed  Google Scholar 

  • Lee CE, Mitchell-Olds T (2006) Preface to the special issue: ecological and evolutionary genomics of populations in nature. Mol Ecol 15:1193–1196. doi:10.1111/j.1365-294X.2006.02945.x

    PubMed  Google Scholar 

  • Luikart G, England PR, Tallman D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994. doi:10.1038/nrg1226

    CAS  PubMed  Google Scholar 

  • Lyons LA, Laughlin TF, Copeland NG, Jankins NA, Womack JE, O’Brien SJ (1997) Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet 15:47–56. doi:10.1038/ng0197-47

    Google Scholar 

  • Majerus MEN, Mundy NI (2003) Mammalian melanism: natural selection in black and white. Trends Genet 19:585–590. doi:10.1016/j.tig.2003.09.003

    CAS  PubMed  Google Scholar 

  • Merila J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903. doi:10.1046/j.1420-9101.2001.00348.x

    Google Scholar 

  • MHC Sequencing Consortium T (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401:921–923. doi:10.1038/44853

    Google Scholar 

  • Miller KM, Ming TJ, Schulze AD, Withler RE (1999) Denaturing gradient gel electrophoresis (DGGE): a rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques 27:1016–1030

    CAS  PubMed  Google Scholar 

  • Miller KM, Kaukinen KH, Beacham TD, Withler RE (2001) Geographic heterogeneity in natural selection on an MHC locus in sockeye salmon. Genetica 111:237–257. doi:10.1023/A:1013716020351

    CAS  PubMed  Google Scholar 

  • Miterski B, Kruger R, Wintermeyer P, Epplen JT (2000) PCR/SSCP detects reliably and efficiently DNA sequence variations in large scale screening projects. Comb Chem High Throughput Screen 3:211–218

    CAS  PubMed  Google Scholar 

  • Morin PA, Luikart G, Wayne RK, SNP workshop group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216. doi:10.1016/j.tree.2004.01.009

    Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254. doi:10.1080/10635150252899752

    PubMed  Google Scholar 

  • Mundy NI (2005) A window on the genetics of evolution: MC1R and plumage colouration in birds. Proc R Soc Lond B Biol Sci 272:1633–1640

    CAS  Google Scholar 

  • Mundy NI, Badcock NS, Hart T, Scribner K, Janssen K, Nadeau NJ (2004) Conserved genetic basis of a quantitative plumage trait involved in mate choice. Science 303:1870–1873. doi:10.1126/science.1093834

    CAS  PubMed  Google Scholar 

  • Musolf K, Meyer-Lucht Y, Sommer S (2004) Evolution of MHC-DRB class II polymorphism in the genus Apodemus and a comparison of DRB sequences within the family Muridae (Mammalia: Rodentia). Immunogenetics 56:420–426. doi:10.1007/s00251-004-0715-9

    CAS  PubMed  Google Scholar 

  • Nachman M, Hoekstra HE, D’Agostino SL (2003a) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci USA 100:5268–5273. doi:10.1073/pnas.0431157100

    CAS  PubMed  Google Scholar 

  • Nachman MW, Hoekstra HE, D’Agostino SL (2003b) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci USA 100:5268–5273. doi:10.1073/pnas.0431157100

    CAS  PubMed  Google Scholar 

  • Nataraj AJ, Olivos-Glander I, Kusukawa N, Highsmith WE (1999) Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis 20:1177–1185. doi:10.1002/(SICI)1522-2683(19990101)20:6<1177::AID-ELPS1177>3.0.CO;2-2

    CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nielsen R (1997) The ratio of replacement to silent divergence and tests of neutrality. J Evol Biol 10:217–231. doi:10.1007/s000360050019

    Google Scholar 

  • Oleksiak MF, Churchill GA, Crawford DL (2002a) Variation in gene expression within and among natural populations. Nat Genet 32:261–266. doi:10.1038/ng983

    CAS  PubMed  Google Scholar 

  • Oleksiak MF, Churchill GA, Crawford DL (2002b) Variation in gene expression within and among natural populations. Nat Genet 32:261–266. doi:10.1038/ng983

    CAS  PubMed  Google Scholar 

  • Palumbi SR (1995) Nucleic acids II: the polymerase chain reaction. In: Hillis D, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, MA, pp 205–247

    Google Scholar 

  • Palumbi SR (2002) Molecular zoology. Wiley-Liss, New York

    Google Scholar 

  • Paterson S (1998) Evidence for balancing selection at the major histocompatibility complex in a free-living ruminant. J Hered 89:289–294. doi:10.1093/jhered/89.4.289

    CAS  PubMed  Google Scholar 

  • Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc Natl Acad Sci USA 95:3714–3719. doi:10.1073/pnas.95.7.3714

    CAS  PubMed  Google Scholar 

  • Piertney SB, Oliver MJ (2006) The evolutionary ecology of the major histocompatibility complex (MHC). Heredity 96:7–21

    CAS  PubMed  Google Scholar 

  • Potts WK (1996) PCR-based cloning across large taxonomic distances and polymorphism detection: MHC as a case study. In: Ferraris JD, Palumbi SR (eds) Molecular zoology: advances, strategies and protocols. Wiley, New York, pp 181–194

    Google Scholar 

  • Potts WK, Manning CJ, Wakeland EK (1991) Mating patterns in seminatural populations of mice influenced by Mhc genotype. Nature 352:619–621. doi:10.1038/352619a0

    CAS  PubMed  Google Scholar 

  • Powers DA, Lauerman T, Crawford D, Smith M, Gonzalez-Villasenor I, DiMichele I (1991) The evolutionary significance of genetic variation at enzyme synthesizing loci in the teleost Fundulus heteroclitus. J Fish Biol 39:169–184. doi:10.1111/j.1095-8649.1991.tb05081.x

    CAS  Google Scholar 

  • Radtkey RR, Becker B, Miller RD, Riblet R, Case TJ (1996) Variation and evolution of class I Mhc in sexual and parthenogenetic geckos. Proc R Soc Lond B Biol Sci 263:1023–1032

    CAS  Google Scholar 

  • Rank NE, Dahlhoff EP (2002) Allele frequency shifts in response to climate change and physiological consequences of allozyme variation in a montane insect. Evolution 56:2278–2289

    CAS  PubMed  Google Scholar 

  • Rebbeck TR, Spitz M, Wu X (2004) Assessing the function of genetic variants in candidate gene association studies. Nat Rev Genet 5:589–597

    CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution Int J Org Evolution 55:1095–1103

    CAS  Google Scholar 

  • Rosenblum EB, Hoekstra HE, Nachman MW (2004) Adaptive reptile colour variation and the evolution of the MC1R gene. Evolution Int J Org Evolution 58:1794–1808

    CAS  Google Scholar 

  • Schaefer BC (1995) Revolutions in rapid amplification of Cdna ends—new strategies for polymerase chain-reaction cloning of full-length Cdna ends. Anal Biochem 227:255–273. doi:10.1006/abio.1995.1279

    CAS  PubMed  Google Scholar 

  • Schlag EM, Wassarman DA (1999) Identifying mutations in Drosophila genes by direct sequencing of PCR products. Biotechniques 27:262–264

    CAS  PubMed  Google Scholar 

  • Seddon JM, Ellegren H (2004) A temporal analysis shows major histocompatibility complex loci in the Scandinavian wolf population are consistent with neutral evolution. Proc R Soc Lond B Biol Sci 271:2283–2291

    CAS  Google Scholar 

  • Sommer S (2003) Effects of habitat fragmentation and changes of dispersal behaviour after a recent population decline on the genetic variability of noncoding and coding DNA of a monogamous Malagasy rodent. Mol Ecol 12:2845–2851. doi:10.1046/j.1365-294X.2003.01906.x

    CAS  PubMed  Google Scholar 

  • Stearns SC, Magwene P (2003) The naturalist in a world of genomics. Am Nat 161:171–180. doi:10.1086/367983

    PubMed  Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2007) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170

    PubMed  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    CAS  PubMed  Google Scholar 

  • The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. doi:10.1038/75556

    Google Scholar 

  • Till BJ, Zerr T, Bowers E, Greene EA, Comai L, Henikoff S (2006) High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling. Nucleic Acids Res 34:e99. doi:10.1093/nar/gk1479

  • Tregouet DA, Ducimetiere P, Tiret L (1997) Testing associations between candidate-gene markers and phenotype in related individuals, by use of estimating equations. Am J Hum Genet 61:189–199. doi:10.1086/513895

    CAS  PubMed  Google Scholar 

  • Vasemagi A, Primmer C (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642. doi:10.1111/j.1365-294X.2005.02690.x

    CAS  PubMed  Google Scholar 

  • Voss SR, Prudic KL, Oliver JC, Shaffer HB (2003) Candidate gene analysis of metamorphic timing in ambystomatid salamanders. Mol Ecol 12:1217–1223

    CAS  PubMed  Google Scholar 

  • Watt WB, Dean AM (2000) Molecular function studies of adaptive genetic variation in prokaryotes and eukaryotes. Annu Rev Genet 34:593–622. doi:10.1146/annurev.genet.34.1.593

    CAS  PubMed  Google Scholar 

  • Watterson GA (1978) The homozygosity test of neutrality. Genetics 88:405–417

    PubMed  Google Scholar 

  • Yang ZH, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    CAS  PubMed  Google Scholar 

  • Younger RM, Amadou C, Bethel G, Ehlers A, Fischer Lindahl K (2000) Characterization of clustered MHC-linked olfactory receptor genes in human and mouse. Genome Res 11:51930

    Google Scholar 

Download references

Acknowledgements

We would like to thank Gernot Segelbacher, Jacob Hoglund and various members of the Piertney lab group for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart B. Piertney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piertney, S.B., Webster, L.M.I. Characterising functionally important and ecologically meaningful genetic diversity using a candidate gene approach. Genetica 138, 419–432 (2010). https://doi.org/10.1007/s10709-008-9322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9322-2

Keywords

Navigation