Skip to main content
Log in

Analysis and implications of mutational variation

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V M ). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V M for fitness is only a tiny fraction of V M observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajie BC, Estes S, Lynch M, Phillips PC (2005) Behavioral degradation under mutation accumulation in Caenorhabditis elegans. Genetics 170:655–660. doi:10.1534/genetics.104.040014

    Article  PubMed  Google Scholar 

  • Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437:1149–1152. doi:10.1038/nature04107

    Article  PubMed  CAS  Google Scholar 

  • Ávila V, Chavarrías D, Sánchez E, Manrique A, López-Fanjul C, García-Dorado A (2006) Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster. Genetics 173:267–277. doi:10.1534/genetics.106.056200

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RB, Keightley PD, Laurén-Määttä C, Vassilieva LL, Lynch M, Leroi AM (2002) Spontaneous mutational variation for body size in Caenorhabditis elegans. Genetics 162:755–765

    PubMed  Google Scholar 

  • Baer CF, Shaw F, Steding C, Baurngartner M, Hawkins A, Houppert A et al (2005) Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes. Proc Natl Acad Sci USA 102:5785–5790. doi:10.1073/pnas.0406056102

    Article  PubMed  CAS  Google Scholar 

  • Bataillon T (2000) Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity 84:497–501. doi:10.1046/j.1365-2540.2000.00727.x

    Article  PubMed  Google Scholar 

  • Bataillon T (2003) Shaking the ‘deleterious mutations’ dogma? Trends Ecol Evol 18:315–317. doi:10.1016/S0169-5347(03)00128-9

    Article  Google Scholar 

  • Bateman AJ (1959) The viability of near-normal irradiated chromosomes. Int J Radiat Biol 1:170–180. doi:10.1080/09553005914550241

    Article  Google Scholar 

  • Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE et al (2008) Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 4:e1000083. doi:10.1371/journal.pgen.1000083

    Article  PubMed  CAS  Google Scholar 

  • Bubb KL, Bovee D, Buckley D, Haugen E, Kibukawa M, Paddock M et al (2006) Scan of human genome reveals no new loci under ancient balancing selection. Genetics 173:2165–2177. doi:10.1534/genetics.106.055715

    Article  PubMed  CAS  Google Scholar 

  • Bulmer MG (1989) Maintenance of genetic variability by mutation-selection balance: a child’s guide through the jungle. Genome 31:761–767

    Google Scholar 

  • Burch CL, Guyader S, Samarov D, Shen H (2007) Experimental estimate of the abundance and effects of nearly neutral mutations in the RNA virus ϕ6. Genetics 176:467–476. doi:10.1534/genetics.106.067199

    Article  PubMed  CAS  Google Scholar 

  • Bürger R (2000) The mathematical theory of selection, recombination and mutation. Wiley, Chichester

    Google Scholar 

  • Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Annu Rev Genet 23:251–287. doi:10.1146/annurev.ge.23.120189.001343

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340. doi:10.1017/S0016672399004152

    Article  PubMed  CAS  Google Scholar 

  • Clayton G, Robertson A (1955) Mutation and quantitative variation. Am Nat 89:151–158. doi:10.1086/281874

    Article  Google Scholar 

  • Crow JF, Simmons MJ (1983). The mutation load in Drosophila. pp 1–35. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila, vol 3C. Academic Press, London

  • Davies EK, Peters AD, Keightley PD (1999) High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science 285:1745–1747. doi:10.1126/science.285.5434.1748

    Article  Google Scholar 

  • Denver DR, Morris K, Lynch M, Thomas WK (2004) High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430:679–682. doi:10.1038/nature02697

    Article  PubMed  CAS  Google Scholar 

  • Denver DR, Feinberg S, Estes S, Thomas WK, Lynch M (2005) Mutation rates, spectra, and hotspots in mismatch repair-deficient Caenorhabditis elegans. Genetics 170:107–113. doi:10.1534/genetics.104.038521

    Article  PubMed  CAS  Google Scholar 

  • Elena SF, Moya A (1999) Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J Evol Biol 12:1078–1088. doi:10.1046/j.1420-9101.1999.00110.x

    Article  Google Scholar 

  • Estes S, Lynch M (2003) Rapid fitness recovery in mutationally degraded lines of Caenorhabditis elegans. Evolution 57:1022–1030

    PubMed  Google Scholar 

  • Estes S, Phillips PC, Denver DR, Thomas KW, Lynch M (2004) Mutation accumulation in populations of varying sizes: the distribution of mutational effects for fitness correlates in Caenorhabditis elegans. Genetics 166:1269–1279. doi:10.1534/genetics.166.3.1269

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8:610–618. doi:10.1038/nrg2146

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Keightley PD, Smith NGC, Gaffney D (2002) Quantifying the slightly deleterious model of molecular evolution. Mol Biol Evol 19:2142–2149

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Woolfit M, Phlelps T (2006) The distribution of fitness of new deleterious amino acid mutations in humans. Genetics 173:891–900. doi:10.1534/genetics.106.057570

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, London

    Google Scholar 

  • Fernández J, López-Fanjul C (1996) Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics 143:829–837

    PubMed  Google Scholar 

  • Fry JD, Keightley PD, Heinsohn SL, Nuzhdin SV (1999) New estimates of rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc Natl Acad Sci USA 96:574–579. doi:10.1073/pnas.96.2.574

    Article  PubMed  CAS  Google Scholar 

  • García-Dorado A (1997) The rate and effects distribution of viable mutation in Drosophila: minimum distance estimation. Evolution 51:1130–1139. doi:10.2307/2411042

    Article  Google Scholar 

  • García-Dorado A, Marin JM (1998) Minimum distance estimation of mutational parameters for quantitative traits. Biometrics 54:1097–1114. doi:10.2307/2533860

    Article  PubMed  Google Scholar 

  • García-Dorado A, Gallego A (2003) Comparing analysis methods for mutation-accumulation data: A simulation study. Genetics 164:807–819

    PubMed  Google Scholar 

  • García-Dorado A, López-Fanjul C, Caballero A (1999) Properties of spontaneous mutations affecting quantitative traits. Genet Res 74:341–350. doi:10.1017/S0016672399004206

    Article  PubMed  Google Scholar 

  • Gilligan DM, Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (1997) Is mutation accumulation a threat to the survival of endangered populations? Conserv Biol 11:1235–1241. doi:10.1046/j.1523-1739.1997.96215.x

    Article  Google Scholar 

  • Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Charlesworth B et al (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445:82–85. doi:10.1038/nature05388

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16:875–884. doi:10.1101/gr.5022906

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Peters AD, Keightley PD (2003) Estimating numbers of EMS-induced mutations affecting life history traits in Caenorhabditis elegans in crosses between inbred sublines. Genet Res 82:191–205. doi:10.1017/S0016672303006499

    Article  PubMed  Google Scholar 

  • Hill WG (1982a) Rates of change in quantitative traits from fixation of new mutations. Proc Natl Acad Sci USA 79:142–145. doi:10.1073/pnas.79.1.142

    Article  PubMed  CAS  Google Scholar 

  • Hill WG (1982b) Predictions of response to artificial selection from new mutations. Genet Res 40:255–278

    PubMed  Google Scholar 

  • Hill WG, Rasbash J (1986) Models of long term artificial selection in finite population with recurrent mutation. Genet Res 48:125–131

    PubMed  CAS  Google Scholar 

  • Houle D, Nuzhdin SV (2004) Mutation accumulation and the effect of copia insertions in Drosophila melanogaster. Genet Res 83:7–18. doi:10.1017/S0016672303006505

    Article  PubMed  CAS  Google Scholar 

  • Houle D, Hoffmaster D, Assimacopolous S, Charlesworth B (1992) The genomic mutation rate for fitness in Drosophila. Nature 359:58–60. doi:10.1038/359058a0

    Article  PubMed  CAS  Google Scholar 

  • Houle D, Morikawa B, Lynch M (1996) Comparing mutational variabilities. Genetics 143:1467–1483

    PubMed  CAS  Google Scholar 

  • Joseph SB, Hall DW (2004) Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 168:1817–1825. doi:10.1534/genetics.104.033761

    Article  PubMed  Google Scholar 

  • Keightley PD (1994) The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138:1315–1322

    PubMed  CAS  Google Scholar 

  • Keightley PD (1998) Inference of genome wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics 150:1283–1293

    PubMed  CAS  Google Scholar 

  • Keightley PD (2004a) Mutational variation and long-term selection response. Plant Breed Rev 24(part 1):227–247

    Google Scholar 

  • Keightley PD (2004b) Comparing analysis methods for mutation-accumulation data. Genetics 167:551–553. doi:10.1534/genetics.167.1.551

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD, Caballero A (1997) Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 94:3823–3827. doi:10.1073/pnas.94.8.3823

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD, Ohnishi O (1998) EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics 148:753–766

    PubMed  CAS  Google Scholar 

  • Keightley PD, Bataillon TA (2000) Multi-generation maximum likelihood analysis applied to mutation accumulation experiments in Caenorhabditis elegans. Genetics 154:1193–1201

    PubMed  CAS  Google Scholar 

  • Keightley PD, Lynch M (2003) Towards a realistic model of mutations affecting fitness. Evolution Int J Org Evolution 57:683–685

    Google Scholar 

  • Keightley PD, Eyre-Walker A (2007) Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177:2251–2261

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983). The neutral theory of molecular evolution. Cambridge University Press, Cambridge

  • Lande R (1994) Risk of population extinction from fixation of new deleterious mutations. Evolution 48:1460–1469. doi:10.2307/2410240

    Article  Google Scholar 

  • Livingston RJ, von Niederhausern A, Jegga AG, Crawford DC, Carlson CS, Rieder MJ et al (2004) Pattern of sequence variation across 213 environmental response genes. Genome Res 14:1821–1831. doi:10.1101/gr.2730004

    Article  PubMed  CAS  Google Scholar 

  • Loewe L, Charlesworth B, Bartolomé C, Nöel V (2006) Estimating selection on non-synonymous mutations. Genetics 172:1079–1092. doi:10.1534/genetics.105.047217

    Article  PubMed  CAS  Google Scholar 

  • López MA, López-Fanjul C (1993) Spontaneous mutation for a quantitative trait in Drosophila melanogaster I. Response to artificial selection. Genet Res 61:107–116

    PubMed  Google Scholar 

  • Lyman RF, Lawrence F, Nuzhdin SV, Mackay TFC (1996) Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143:277–292

    PubMed  CAS  Google Scholar 

  • Lynch M (1988) The rate of polygenic mutation. Genet Res 51:137–148

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Hill WG (1986) Phenotypic evolution by neutral mutation. Evolution 40:915–935. doi:10.2307/2408753

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MA, USA

    Google Scholar 

  • Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518. doi:10.1086/285812

    Article  Google Scholar 

  • Lynch M, Blanchard J, Houle D, Kibota T, Schultz S, Vassilieva L et al (1999) Perspective: spontaneous deleterious mutation. Evolution Int J Org Evolution 53:645–663. doi:10.2307/2640707

    Google Scholar 

  • Mackay TFC (1988) Transposable element-induced quantitative genetic variation in Drosophila. In: Weir BS, Eisen EJ, Goodman MM, Namkoong G (eds) Proceedings of the second international conference on quantitative genetics. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Mukai T (1964) The genetic structure of natural populations of Drosophila melanogaster I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50:1–19

    PubMed  CAS  Google Scholar 

  • Mukai T, Chigusa SI, Mettler LE, Crow JF (1972) Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72:333–355

    Google Scholar 

  • Nielsen R, Yang Z (2003) Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Mol Biol Evol 20:1231–1239. doi:10.1093/molbev/msg147

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi O (1977) Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster II. Homozygous effect of polygenic mutations. Genetics 87:529–545

    PubMed  CAS  Google Scholar 

  • Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3:252–261. doi:10.1038/nrg761

    Article  PubMed  CAS  Google Scholar 

  • Piganeau GV, Eyre-Walker A (2003) Estimating the distribution of fitness effects from DNA sequence data: implications for the molecular clock. Proc Natl Acad Sci USA 100:10335–10340. doi:10.1073/pnas.1833064100

    Article  PubMed  CAS  Google Scholar 

  • Robertson A (1967) The nature of quantitative genetic variation. In: Brink RB (ed) Heritage from Mendel. University of Wisconsin Press, Madison, Milwaukee and London, pp 265–280

    Google Scholar 

  • Sawyer SA, Kulathinal RJ, Bustamante CD, Hartl DL (2003) Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. J Mol Evol 57:S154–S164. doi:10.1007/s00239-003-0022-3

    Article  PubMed  CAS  Google Scholar 

  • Schoen DJ (2005) Deleterious mutation in related species of the plant genus Amsinckia with contrasting mating systems. Evolution 59:2370–2377

    PubMed  Google Scholar 

  • Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, Turissini DA et al (2007) Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci USA 104:2271–2276. doi:10.1073/pnas.0610385104

    Article  PubMed  Google Scholar 

  • Shaw RG, Chang SM (2006) Gene action of new mutations in Arabidopsis thaliana. Genetics 172:1855–1865. doi:10.1534/genetics.105.050971

    Article  PubMed  CAS  Google Scholar 

  • Shaw RG, Byers DL, Darmo E (2000) Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155:369–378

    PubMed  CAS  Google Scholar 

  • Shaw FH, Geyer CJ, Shaw RG (2002) A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution Int J Org Evolution 56:453–463

    Google Scholar 

  • Shaw RG, Shaw FH, Geyer C (2003) What fraction of mutations reduces fitness? A reply to Keightley and Lynch. Evolution 57:686–689

    Google Scholar 

  • Smith NGC, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024. doi:10.1038/4151022a

    Article  PubMed  CAS  Google Scholar 

  • Vassilieva LL, Lynch M (1999) The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics 151:119–129

    PubMed  CAS  Google Scholar 

  • Vassilieva LL, Hook AM, Lynch M (2000) The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution 54:1234–1246

    PubMed  CAS  Google Scholar 

  • Webb CT, Shabalina SA, Ogurtsov AY, Kondrashov AS (2002) Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Res 30:1233–1239. doi:10.1093/nar/30.5.1233

    Article  PubMed  CAS  Google Scholar 

  • Zhang XS, Hill WG (2005) Genetic variability under mutation selection balance. Trends Ecol Evol 20:468–470. doi:10.1016/j.tree.2005.06.010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Penny Haddrill, Bill Hill and Mark Kirkpatrick for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Keightley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keightley, P.D., Halligan, D.L. Analysis and implications of mutational variation. Genetica 136, 359–369 (2009). https://doi.org/10.1007/s10709-008-9304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9304-4

Keywords

Navigation