Skip to main content
Log in

Population structure and genetic diversity distribution in wild and cultivated populations of the traditional Chinese medicinal plant Magnolia officinalis subsp. biloba (Magnoliaceae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Magnolia officinalis subsp. biloba, a traditional Chinese medicinal plant, experienced severe declines in the number of populations and the number of individuals in the late 20th century due to the widespread harvest of the subspecies. A large-scale cultivation program was initiated and cultivated populations rapidly recovered the loss in individual plant numbers, but wild populations remained small as a consequence of cutting. In this study, the levels of genetic variation and genetic structure of seven wild populations and five domestic populations of M. officinalis subsp. biloba were estimated employing an AFLP methodology. The plant exhibited a relatively high level of intra-population genetic diversity (h = 0.208 and H j = 0.268). The cultivated populations maintained approximately 95% of the variation exhibited in wild populations, indicating a slight genetic bottleneck in the cultivated populations. The analysis of genetic differentiation revealed that most of the AFLP diversity resided within populations both for the wild group (78.22%) and the cultivated group (85.92%). Genetic differentiation among populations in the wild group was significant (F ST = 0.1092, P < 0.005), suggesting wild population level genetic structure. Principal coordinates analysis (PCO) did not discern among wild and cultivated populations, indicating that alleles from the wild population were maintained in the cultivated gene pool. Results from the present study provide important baseline data for effectively conserving the genetic resources of this medicinal subspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  Google Scholar 

  • Adin A, Weber JC, Sotelo Montes C, Vidaurre H, Vosman B, Smulders MJM (2004) Genetic differentiation and trade among populations of peach palm (Bactris gasipaes Kunth) in the Peruvian Amazon—implications for genetic resource management. Theor Appl Genet 108:1564–1573

    Article  PubMed  CAS  Google Scholar 

  • Cao CP, Finkeldey R, Siregar IZ, Siregar UJ, Gailing O (2006) Genetic diversity within and among populations of Shorea leprosula Miq. and Shorea parvifolia Dyer (Dipterocarpaceae) in Indonesia detected by AFLPs. Tree Genet Genomes 2:225–239

    Article  Google Scholar 

  • Chu M, Ding LW, Liu H, Li YW (2003) Brief introduction of Magnolia officinalis commercial resource. Chin Tradit Herb Drugs 34:14–15

    Google Scholar 

  • Coart E, Lamote V, De Loose M, Van Bockstaele E, Lootens P, Roldán-Ruiz I (2002) AFLP markers demonstrate local genetic differentiation between two indigenous oak species [Quercus robur L. and Quercus petraea (Matt.) Liebl.] in Flemish populations. Theor Appl Genet 105:431–439

    Article  PubMed  CAS  Google Scholar 

  • Doebley J (1992) Molecular systematics and crop evolution. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman Hall, New York, pp 202–222

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variation inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fu LK (1992) China plant red data book—rare and endangered plants. Science Press, Beijing, pp 416–417

    Google Scholar 

  • Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637

    Article  PubMed  CAS  Google Scholar 

  • Guo BL, Wu M, Si JP, Li JS, Xiao P (2001) Research on DNA molecular marker of magnolia officinalis rehd. et wils.—RAPD study on certified species. Acta Pharm Sin 36:386–389

    CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effect of life history traits on genetic diversity in plant species. Phil Trans R Soc Lond B 351:1291–1298

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1997) Allozyme diversity in cultivated crops. Crop Sci 37:26–31

    CAS  Google Scholar 

  • Hancock JF (2004) Plant evolution and the origin of crop species. CABI Publishing, Cambrige, MA

    Google Scholar 

  • Heaton HJ, Whitkus R, Gómez-pompa A (1999) Extreme ecological and phenotypic differences in the tropical tree chicozapote (Manilkara zapota (L.) P. Royen) are not matched by genetic divergence: a random amplified polymorphic DNA (RAPD) analysis. Mol Ecol 8:627–632

    Article  Google Scholar 

  • Kaliz S, Nason JD, Hanzawa FM, Tonsor SJ (2001) Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history and selection. Evolution 55:1560–1568

    Google Scholar 

  • Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–198

    Google Scholar 

  • Lara-Gomez G, Gailing O, Finkeldey R (2005) Genetic variation in isolated Mexican populations of the endemic maple Acer skutchii Rehd. Allg Forst-Jagdztg 176:97–103

    Google Scholar 

  • Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108

    Article  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Google Scholar 

  • Li XL, Song WQ, An ZP, Chen RY (1998) Karyotype analysis of some species of Magnolia in China. Acta Bot Yunnan 20:204–206

    Google Scholar 

  • Liu YH, Zhou RZ, Zeng QW (1997) Ex situ conservation of magnoliaceae including its rare and endangered species. J Trop Subtrop Bot 5:1–12

    CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Marghali S, Panaud O, Lamy F, Ghariani S, Sarr A, Marrakchi M, Trifi-Farah N (2005) Exploration of intra- and inter-population genetic diversity in Hedysarum coronarium L. by AFLP markers. Genet Resour Crop Evol 52:277–284

    Article  CAS  Google Scholar 

  • McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  • Miller AJ, Schaal BA (2006) Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae). Mol Ecol 15:1467–1480

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Ikeda K, Sakai Y (2001) Inhibitory effect of magnolol and honokiol from Magnolia obovata on Human Fibrosarcoma HT–1080 invasiveness in vitro. Planta Med 67:705–708

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Ogata M, Hoshi M, Shimotohno K, Urano S, Endo T (1997) Antioxidant activity of magnolol, honokiol, and related phenolic compounds. J Am Oil Chem Soc 74:557–562

    Article  CAS  Google Scholar 

  • O’Neill GA, Dawson IK, Sotelo Montes C, Guarino L, Current D, Guariguata M, Weber JC (2001) Strategies for genetic conservation of trees in the Peruvian Amazon basin. Biodivers Conserv 10:837–850

    Article  Google Scholar 

  • Pan XP, Huang XG, Ren QY, Mei XL, Liu R, Si JP (1994) Study on seedling raising of Magnolia officinalis. J Chin Med Mater 19:147–149

    Google Scholar 

  • Peng H, Xu ZF (1997) The threatened wild plants used for medicine as Chinese medicinal herbs. In: Xie ZH (ed) Conserving China’s biodiversity. China Environmental Science Press, Beijing, pp 218–234

    Google Scholar 

  • Qiu Y, Parks CR (1994) Disparity of allozyme variation levels in three Magnolia (Magnoliaceae) species from the southeastern United States. Am J Bot 81:1300–1308

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYSpc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software. Setauket, New York, USA

    Google Scholar 

  • SAS Institute Inc (2000) SAS version 8.0. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Si JP, Pan XP, Mei XL, Liu R (1994) The present situation of Cortex Magnolia officinalis and the opinion on the development and conservation. J Chin Med Mater 17:11–14

    Google Scholar 

  • Si JP, Liu R, Cai TA, Pan XP, Xu DM (1998) Preliminary studies on heteromorphosis of Magnolia officialis from different provenances. J Zhejiang Forest Sci Technol 18:13–17

    Google Scholar 

  • Sonnante G, Stockton T, Nodari RO, Becerra Velásquez VL, Gepts P (1994) Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.). Theor Appl Genet 89:629–635

    Article  Google Scholar 

  • Szmidt AE, Wang XR, Lu MZ (1996) Empirical assessment of allozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis. Heredity 76:412–420

    Article  CAS  Google Scholar 

  • Tang T, Zhong Y, Jian SG, Shi SH (2003) Genetic diversity of Hibiscus tiliaceus (Malvaceae) in China assessed using AFLP markers. Ann Bot 92:409–414

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tong ZK, Si JP, Liu R (2000) Study on variation and inheritance of phenolic compound concentrations in Magnolia officinalis of different seed source. J For Res 13:257–261

    Google Scholar 

  • Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol 5:735–745

    Article  PubMed  CAS  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0, Distributed by the author Laboratoire de Génétique et Ecologie Végétale. Université Libre de Bruxelles, Belgium

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, KuiperM Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Weber JC, Sotelo Montes C, Vidaurre H, Dawson IK, Simons AJ (2001) Participatory domestication of agroforestry trees: an example from the Peruvian Amazon. Dev Pract 11:425–433

    Article  Google Scholar 

  • Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Mackenzie K, Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695

    Article  PubMed  CAS  Google Scholar 

  • Wright SI (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  PubMed  CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM (2000) PopGene32. Microsoft Window-based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre. University of Alberta, Edmonton, Alberta, Canada

    Google Scholar 

  • Zheng DG (2006) The latest development of rare plant breeding in Duheyuan Hubei Province Nature Reserve. http://forestry.shiyan.gov.cn/shownews.asp?newsid=778

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  PubMed  CAS  Google Scholar 

  • Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank field collaborators for their help in collecting samples. This work was supported by the National Key Technology R&D Programme of China (No. 2004BA721A26; No. 2006BAI06A15-4) and the Science and Technology Bureau of Hubei Province, China (No. 2004AA304A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youwei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Chen, L., Si, Y. et al. Population structure and genetic diversity distribution in wild and cultivated populations of the traditional Chinese medicinal plant Magnolia officinalis subsp. biloba (Magnoliaceae). Genetica 135, 233–243 (2009). https://doi.org/10.1007/s10709-008-9272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9272-8

Keywords

Navigation