Skip to main content

Advertisement

Log in

Genetic structure and dynamics of a small introduced population: the pikeperch, Sander lucioperca, in the Rhône delta

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Genetic data on introduced populations may help us to understand how these species succeed in colonising new territories. The pikeperch is a predatory fish widely introduced in Europe and has at times been considered as an invasive species. However, little is known about the genetics of both native and introduced populations. In the present study, we surveyed an introduced pikeperch population from the Rhône River delta, a habitat that has been highly modified for agricultural purposes. Using six microsatellites, we genotyped 93 individuals distributed among four hydraulically connected water bodies: the Rhône River, an irrigation canal, a drainage canal and a brackish lagoon. Population isolation were revealed by significant genetic distances and bottleneck highlighted by population monitoring. However, values of allelic richness and unbiased expected heterozygosity observed in these populations were similar, or even higher, compare to 18 native populations from the Baltic Sea drainage. It may be explained by multiple introductions in the Rhône drainage but also by demographic strategy that would have facilitated population persistence in this fragmented habitat. Similarly, heterozygote deficits (revealed by FIS values) have been detected, but were also found in native populations suggesting that mating among relatives could also result from a mating behavior of the species, maybe reinforce here by the reduced carrying capacity of the artificial canals and their respective isolation. Despite harsh environmental conditions and suspected inbreeding, the pikeperch has successfully maintained viable populations in the Rhône delta. Our study suggests that one of the factors in this invasive success, apart from its ecology, could be the maintenance of a good level of genetic diversity in introduced pikeperch populations. This genetic diversity probably stem from both its popularity as game fish and food resource which led to numerous stocking and an increasing propagule pressure and the reproductive strategy of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Armengaud J (1962) Contribution à l’étude de Sander lucioperca L. DESS. Université Montpellier II, Montpellier

    Google Scholar 

  • Bando KJ (2006) The roles of competition and disturbance in a marine invasion. Biol Invasions 8:755–763

    Article  Google Scholar 

  • Belkhir K (1997) GENETIX 4.0, Windows™ software for population genetics, CNRS UPR 9060. Université de Montpellier II, Laboratoire Génome et Population, Montpellier

    Google Scholar 

  • Björklund M, Aho T, Larsson LC (2007) Genetic differentiation in pikeperch (Sander lucioperca): the relative importance of gene flow, drift and common history. J Fish Biol 71:264–278

    Article  Google Scholar 

  • Borer SO, Miller LM, Kapuscinski AR (1999) Microsatellites in walleye Stizostedion vitreum. Mol Ecol 8:336–338

    PubMed  CAS  Google Scholar 

  • Brown JA, Moore WM, Quabius ES (2001) Physiological effects of saline waters on zander. J Fish Biol 59:1544–1555

    Article  Google Scholar 

  • Castric V, Bernatchez L, Belkir K et al (2002) Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity 89:27–35

    Article  PubMed  CAS  Google Scholar 

  • Chauvelon P (1998) A wetland managed for agriculture as an interface between the Rhone river and the Vaccares lagoon (Camargue, France): transfers of water and nutrients. Hydrobiologia 374:181–191

    Article  Google Scholar 

  • Chauvelon P, Sandoz A, Poizat G et al (1996) Hydro-agricultural management in the Rhône river delta, France:consequences on dissolved and solid fluxes, potential impact on fish populations Second International Symposium on Habitat Hydraulics, Quebec

  • Chimits P (1953) Note sur la pisciculture artificielle du sandre. Bull Fr Piscic 168:109–112

    Article  Google Scholar 

  • Clavero M, Garcia-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110

    Article  PubMed  Google Scholar 

  • Cowx IG (1997) L’introduction d’espèces de poissons dans les eaux douces européennes: succès économiques ou désastres écologiques? Bull Fr Pêche et Piscic 344/345:57–77

    Article  Google Scholar 

  • Crivelli AJ (1995) Are fish introductions a threat to endemic fresh-water fishes in the Northern Mediterranean Region? Biol Conserv 72:311–319

    Article  Google Scholar 

  • Dahl J (1984) A century of Pikeperch in Denmark. EIFAC Tech Pap, Suppl 2:344–352

    Google Scholar 

  • Deelder C, Willemsen J (1964) Synopsis of biological data on pike-perch Lucioperca lucioperca (Linnaeus 1758). FAO Fish Synop 28:1–52

    Google Scholar 

  • Fickling NJ, Lee RLG (1983) A review of the ecological impact of the introduction of the zander (Stizostedion lucioperca L.) into waters of the Eurasian mainland. Fish Manage 14:151–155

    Google Scholar 

  • Frankham R (2005) Invasion biology—resolving the genetic paradox in invasive species. Heredity 94:385–385

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ralls K (1998) Conservation biology—inbreeding leads to extinction. Nature 392:441–442

    Article  CAS  Google Scholar 

  • Froese, R, Pauly, D (2003) FishBase

  • Gaggiotti OE, Lange O, Rassmann K et al (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285

    Article  PubMed  CAS  Google Scholar 

  • Goubier J (1972) Acclimatation du Sandre (Lucioperca lucioperca L.) dans les eaux françaises. Verh Int Verein Limnol 18:1147–1154

    Google Scholar 

  • Gozlan RE, St-Hilaire S, Feist SW et al (2005) Biodiversity—Disease threat to European fish. Nature 435:1046

    Article  PubMed  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hartl D, Clark A (1998) Principles of population genetics. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Hokanson KEF (1977) Temperature requirements of some percids and adaptations to the seasonal temperature cycle. J Fish Res Board Can 34:1524–1550

    Google Scholar 

  • Holland BS (2000) Genetics of marine bioinvasions. Hydrobiologia 420:63–71

    Article  CAS  Google Scholar 

  • Huxel GR (1999) Rapid displacement of native species by invasive species: effects of hybridization. Biol Conserv 89:143–152

    Article  Google Scholar 

  • Kaufman L (1992) Catastrophic change in species-rich freshwater ecosystems. The lessons of Lake Victoria. Bioscience 42:846–858

    Article  Google Scholar 

  • Kell LT (1985) The impact of an alien piscivore the zander (Stizostedion lucioperca L.). Ph.D. Thesis, University of Liverpool, Liverpool

  • Kiener A (1968) L’évolution des populations de sandre dans deux étangs méditerranéens. La Terre et la Vie 22:470–491

    Google Scholar 

  • Koehn JD (2004) Carp (Cyprinus carpio) as a powerful invader in Australian waterways. Freshw Biol 49:882–894

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kolbe JJ, Glor RE, Rodriguez Schettino L et al (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–1781

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen J, Dörner H, Wysujack K (2003) Reproduction biology of pikeperch (Sander lucioperca (L.))—a review. Ecol Freshw Fish 12:95–106

    Article  Google Scholar 

  • Leclerc D, Wirth T, Bernatchez L (2000) Isolation and characterization of microsatellite loci in the yellow perch (Perca flavescens), and cross-species amplification within the family Percidae. Mol Ecol 9:995–997

    Article  PubMed  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Lehtonen H (1983) Stocks of pike-perch (Stizostedion lucioperca L.) and their management in the Archipelago Sea and the Gulf of Finland. Finn Fish Res 5:1–16

    Google Scholar 

  • Lehtonen H, Hansson S, Winkler H (1996) Biology and exploitation of pikeperch, Stizostedion lucioperca (L.), in the Baltic Sea area. Ann Zool Fenn 33:525–535

    Google Scholar 

  • Lévêque R (1957) Note sur la faune ichtyologique de Camargue. Terre Vie 2–3:231–240

    Google Scholar 

  • Lindholm AK, Breden F, Alexander HJ et al (2005) Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Mol Ecol 14:3671–3682

    Article  PubMed  CAS  Google Scholar 

  • Manchester SJ, Bullock JM (2000) The impacts of non-native species on UK biodiversity and the effectiveness of control. J Appl Ecol 37:845–864

    Article  Google Scholar 

  • Marchetti MP, Moyle PB, Levine R (2004) Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecol Appl 14:587–596

    Article  Google Scholar 

  • Maruyama T, Fuerst PA (1985a) Population bottlenecks and nonequilibrium models in population genetics .2. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    PubMed  CAS  Google Scholar 

  • Maruyama T, Fuerst PA (1985b) Population bottlenecks and nonequilibrium models in population genetics. 3. Genic homozygosity which experience periodic bottlenecks. Genetics 111:691–703

    PubMed  CAS  Google Scholar 

  • Nolte AW, Freyhof J, Stemshorn KC et al (2005) An invasive lineage of sculpins, Cottus sp. (Pisces, Teleostei) in the rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proc R Soc Lond Ser B 272:2379–2387

    Article  Google Scholar 

  • Poizat G, Crivelli AJ (1997) Use of seasonally flooded marshes by fish in a Mediterranean wetland: timing and demographic consequences. J Fish Biol 51:106–119

    Article  PubMed  Google Scholar 

  • Poizat G, Chauvelon P, Rosecchi E et al (1999) Passage de poissons du Rhône par les pompes d’irrigation de Camargue : premiers résultats. Bull Fr Pêche et Piscic 352:31–43

    Article  Google Scholar 

  • Poulet N, Berrebi P, Crivelli AJ et al (2004) Genetic and morphometric variations in the pikeperch (Sander lucioperca L.) of a fragmented delta. Arch Hydrobiol 159:531–554

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (Version-1.2)—population-genetics software for exact tests and Ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc B 273:2453–2459

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rosecchi E, Crivelli AJ (1995) Sand smelt (Atherina boyeri) migration within the water system of the Camargue, Southern France. Hydrobiologia 301:289–298

    Article  Google Scholar 

  • Salonen S, Helminen H, Sarvala J (1996) Feasibility of controlling coarse fish populations through pikeperch (Stizostedion lucioperca) stocking in Lake Koeylioenjaervi, SW Finland. Ann Zool Fenn 33:451–457

    Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New-York

    Google Scholar 

  • Sonesten L (1991) The biology of pikeperch—a literature review. Information fran Sötvattenslaboratoriet, Drottningholm 1:68–71

    Google Scholar 

  • Stepien, CA, Brown, JE, Neilson, NE et al (2005) Genetic diversity of invasive species in the Great Lakes versus their eurasian source populations:insights for risk analysis. Risk Anal 25

  • Svardson G, Molin G (1973) The impact of climate on Scandinavian populations of the zander (Stizostedion lucioperca L.). Inst Freshw Res Drottningholm Rep 53:112–139

    Google Scholar 

  • Townsend CR (2003) Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conserv Biol 17:38–47

    Article  Google Scholar 

  • Ury HK (1976) A comparison of four procedures for multiple comparisons among means (pairwise contrasts) for arbitrary sample sizes. Technometrics 18:89–97

    Article  Google Scholar 

  • Van Densen WLT (1994) Predator enhancement in freshwater fish communities. In: Cowx IG (ed) Rehabilitation of freshwater fisheries. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256

    Article  Google Scholar 

  • Vitousek PM, DAntonio CM, Loope LL et al (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Wallet M, Lambert A (1986) Enquête sur la répartition et l’évolution du parasitisme a Bucephalus polymorphus Baer, 1827 chez le mollusque Dreissena polymorpha dans le sud-est de la France. Bull Fr Pêche et Piscic.:19–24

    Article  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

  • Weir BS, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Welcomme RL (1988) International introductions of inland aquatic species. FAO, Rome

    Google Scholar 

  • Wirth T, Saint-Laurent R, Bernatchez L (1999) Isolation and characterization of microsatellite loci in the walleye (Stizostedion vitreum), and cross-species amplification within the family Percidae. Mol Ecol 8:1960–1963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alain J. Crivelli for providing fish monitoring data, Patrick Berrebi for his valuable comments on the earlier version of the manuscript, Pascal Contournet for his help on the field, Peter Shipley Cock van Oosterhout for providing useful advices about Microcheker and Vincent Castric for his useful advice about the MLH method. We thank Mark, Emma, Suzanne and Turi for their fruitful comments on the early draft of the manuscript. Funding for this study was provided by the Cemagref (to NP), the Swedish Research Council (to MB) and Carl Tryggers Foundation (to MB). We are indebted to the numerous reviewers for their advices and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Poulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulet, N., Balaresque, P., Aho, T. et al. Genetic structure and dynamics of a small introduced population: the pikeperch, Sander lucioperca, in the Rhône delta. Genetica 135, 77–86 (2009). https://doi.org/10.1007/s10709-008-9260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9260-z

Keywords

Navigation