Skip to main content
Log in

Comparative gene mapping in cattle, Indian muntjac, and Chinese muntjac by fluorescence in situ hybridization

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n = 6 in the female and 2n = 7 in the male. The karyotypic evolution of Indian muntjac via extensive tandem fusions and several centric fusions are well documented by molecular cytogenetic studies mainly utilizing chromosome paints. To achieve higher resolution mapping, a set of 42 different genomic clones coding for 37 genes and the nucleolar organizer region were used to examine homologies between the cattle (2n = 60), human (2n = 46), Indian muntjac (2n = 6/7) and Chinese muntjac (2n = 46) karyotypes. These genomic clones were mapped by fluorescence in situ hybridization (FISH). Localization of genes on all three pairs of M. m. vaginalis chromosomes and on the acrocentric chromosomes of M. reevesi allowed not only the analysis of the evolution of syntenic regions within the muntjac genus but also allowed a broader comparison of synteny with more distantly related species, such as cattle and human, to shed more light onto the evolving genome organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

B. taurus :

Bos taurus

FISH:

Fluorescence in situ hybridization

M. m. vaginalis :

Muntiacus muntjak vaginalis

M. reevesi :

Muntiacus reevesi

NOR:

Nucleolar organizer region

References

  • Buitkamp J, Schwaiger FW, Solinas-Toldo S et al (1995) The bovine interleukin-4 gene: genomic organization, localization, and evolution. Mamm Genome 6:350–356

    Article  PubMed  CAS  Google Scholar 

  • Carver EA, Stubbs L (1997) Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res 7:1123–1137

    PubMed  CAS  Google Scholar 

  • Chi JX, Huang L, Nie W et al (2005) Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma 114:167–172

    Article  PubMed  CAS  Google Scholar 

  • Chowdhary BP, Raudsepp T, Frönicke L et al (1998) Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 8:577–589

    PubMed  CAS  Google Scholar 

  • Frönicke L, Scherthan H (1997) Zoo-fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments. Chromosome Res 5:254–261

    Article  PubMed  Google Scholar 

  • Frönicke L, Chowdhary BP, Scherthan H (1997) Segmental homology among cattle (Bos taurus), Indian muntjac (Muntiacus muntjak vaginalis), and Chinese muntjac (M. reevesi) karyotypes. Cytogenet Cell Genet 77:223–227

    Article  PubMed  Google Scholar 

  • Gautier M, Laurent P, Hayes H et al (2001) Development and assignment of bovine-specific PCR systems for the Texas nomenclature marker genes and isolation of homologous BAC probes. Genet Sel Evol 33:191–200

    Article  PubMed  CAS  Google Scholar 

  • Gautier M, Hayes H, Bonsdorff T et al (2003) Development of a comprehensive comparative radiation hybrid map of bovine chromosome 7 (BTA7) versus human chromosomes 1 (HSA1), 5 (HSA5) and 19 (HSA19). Cytogenet Genome Res 102:25–31

    Article  PubMed  CAS  Google Scholar 

  • Grummt I, Soellner C, Scholz I (1979) Characterization of a cloned ribosomal fragment from mouse which contains the 18S coding region and adjacent spacer sequences. Nucleic Acids Res 6:1351–1369

    Article  PubMed  CAS  Google Scholar 

  • Hartmann N, Scherthan H (2005a) Assignment of telomeric repeat binding factor of genes TERF1 and TERF2 to Indian muntjac chromosome bands 1p32 and 2q33 by in situ hybridization. Cytogenet Genome Res 111:186

    Article  PubMed  CAS  Google Scholar 

  • Hartmann N, Scherthan H (2005b) Assignment of the telomere-repeat binding factor genes TERF1 and TERF2 to Chinese muntjac (2n = 46) chromosome bands 12q3 and 2q33 by in situ hybridization. Cytogenet Genome Res 111:96

    Article  PubMed  CAS  Google Scholar 

  • ISCNDB2000 (2001) International System for Chromosome Nomenclature of Domestic Bovids. In: Di Berardino D, Di Meo GP, Gallagher DS, Hayes H, Iannuzzi L (co-ordinator) (eds). Cytogenet Cell Genet 92:283–299

  • Johnston FP, Church RB, Lin CC (1982) Chromosome rearrangement between the Indian muntjac and Chinese muntjac is accompanied by a delection of middle repetitive DNA. Can J Biochem 60:497–506

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    PubMed  CAS  Google Scholar 

  • Krawetz SA, Herfort MH, Dixon GH (1990) In situ localization of a mammalian protamine gene: parameters affecting specificity of hybridization. Genome 33:459–463

    PubMed  CAS  Google Scholar 

  • Lichter P, Tang CJ, Call K et al (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247:64–69

    Article  PubMed  CAS  Google Scholar 

  • Murmann AE, Gao J, Encinosa M et al (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311:14–26

    Article  PubMed  CAS  Google Scholar 

  • Oeltjen JC, Malley TM, Muzny DM et al (1997) Large-scale comparative sequence analysis of the human and murine Bruton’s tyrosine kinase loci reveals conserved regulatory domains. Genome Res 7:315–329

    PubMed  CAS  Google Scholar 

  • Pardue ML, Hsu TC (1975) Locations of 18S and 28S ribosomal genes on the chromosomes of the Indian muntjac. J Cell Biol 64:251–254

    Article  PubMed  CAS  Google Scholar 

  • Passarge E, Horsthemke B, Farber RA (1999) Incorrect use of the term synteny. Nat Genet 23:387

    Article  PubMed  CAS  Google Scholar 

  • Pennacchio LA (2003) Insights from human/mouse genome comparisons. Mamm Genome 14:429–436

    Article  PubMed  CAS  Google Scholar 

  • Renwick JH (1971) The mapping of human chromosomes. Annu Rev Genet 5:81–120

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H, Cremer T, Arnason U et al (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6:342–347

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann MO, Murmann AE, Richter K et al (2005) Characterization of nuclear compartments identified by ectopic markers in mammalian cells with distinctly different karyotype. Chromosoma 114:39–53

    Article  PubMed  Google Scholar 

  • Shi L, Pathak S (1981) Gametogenesis in a male Indian muntjac x Chinese muntjac hybrid. Cytogenet Cell Genet 30:152–156

    Article  Google Scholar 

  • Shows TB, Brown JA, Chapman VM (1976) Comparative gene mapping of HPRT, G6PD, and PGK in man, mouse, and muntjac deer. Cytogenet Cell Genet 16:436–439

    Article  PubMed  CAS  Google Scholar 

  • Spector DL, Goldman RD, Leinwand LA (1998) Cells: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, New York

    Google Scholar 

  • Wurster DH, Benirschke K (1967) Chromosome studies in some deer, the springbok, and the pronghorn, with notes on placentation in deer. Cytologia (Tokyo) 32:273–285

    CAS  Google Scholar 

  • Wurster DH, Benirschke K (1970) Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168:1364–1366

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Carter NP, Shi L et al (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Muller S, Just R et al (1997a) Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39:396–401

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Wienberg J et al (1997b) A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Chromosome Res 5:109–117

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Wienberg J et al (1997c) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37–43

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Shan XN, Lu XX et al (2001) [Cloning, sequencing and chromosome location of Sry gene of Muntiacus muntjak vaginalis by DOP-PCR and microdissection]. Yi Chuan Xue Bao 28:322–326

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jens Eilbracht, Deutsches Krebsforschungszentrum, Heidelberg, Germany, for providing the BT-18S mouse clone and Dr Stuart Schwartz, University of Chicago, for his critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea E. Murmann.

Additional information

For convenience and to avoid confusion we added for each species a three letter abbreviation prior to the chromosomal band location discussed in this paper: BTA, Cattle chromosome; HSA, Human chromosome; MMV, M. m. vaginalis chromosome; MRE, M. reevesi chromosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murmann, A.E., Mincheva, A., Scheuermann, M.O. et al. Comparative gene mapping in cattle, Indian muntjac, and Chinese muntjac by fluorescence in situ hybridization. Genetica 134, 345–351 (2008). https://doi.org/10.1007/s10709-008-9242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9242-1

Keywords

Navigation