Skip to main content
Log in

Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Nuclear sequences of mitochondrial origin (numts) are common among animals and plants. The mechanism(s) by which numts transfer from the mitochondrion to the nucleus is uncertain, but their insertions may be mediated in part by chromosomal repair mechanisms. If so, then lineages where chromosomal rearrangements are common should be good models for the study of numt evolution. Arvicoline rodents are known for their karyotypic plasticity and numt pseudogenes have been discovered in this group. Here, we characterize a 4 kb numt pseudogene in the arvicoline vole Microtus rossiaemeridionalis. This sequence is among the largest numts described for a mammal lacking a completely sequenced genome. It encompasses three protein-coding and six tRNA pseudogenes that span ∼25% of the entire mammalian mitochondrial genome. It is bordered by a dinucleotide microsatellite repeat and contains four transposable elements within its sequence and flanking regions. To determine the phylogenetic distribution of this numt among the arvicolines, we characterized one of the mitochondrial pseudogenes (cytochrome b) in 21 additional arvicoline species. Average rates of nucleotide substitution in this arvicoline pseudogene are estimated as 2.3 × 10−8 substitutions/per site/per year. Furthermore, we performed comparative analyses among all species to estimate the age of this mitochondrial transfer at nearly 4 MYA, predating the origin of most arvicolines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera A (2002) The connection between transcription and genomic instability. EMBO 24:195–201

    Google Scholar 

  • Bensasson D, Zang D-X, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321

    Article  PubMed  Google Scholar 

  • Blanchard JL, Schmidt W (1996) Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternate perspectives on nucleotide substitution patterns. Mol Biol Evol 13:537–548

    PubMed  CAS  Google Scholar 

  • Carleton MD, Musser GG (1984) Muroid rodents. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. John Wiley & Sons, New York

    Google Scholar 

  • Chaline J, Graf J-D (1988) Phylogeny of the Arvicolidae (Rodentia): biochemical and paleontological evidence. J Mamm 69:22–33

    Article  Google Scholar 

  • Chaline J, Brunet-Lecomte P, Montuire S, Viriot L, Courant F (1999) Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data. Ann Zool Fenn 36:239–267

    Google Scholar 

  • Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucl Acid Res 24:3546–3551

    Article  CAS  Google Scholar 

  • Conroy CJ, Cook JA (2000) Molecular systematics of a holarctic rodent (Microtus: Muridae). J Mamm 6:221–245

    Google Scholar 

  • Contreras LC, Torres-Mura JC, Spotorno AE (1990) The largest known chromosome number from a mammal, in a South American desert rodent. Experimenta 46:506–508

    Article  CAS  Google Scholar 

  • Cooper GM, Brudno M, NISC Comparative Sequencing Program, Green ED, Batzoglou S, Sidow A (2003) Quantitative estimates of sequence divergence for comparative analyses of mammalian genomes. Genome Res 13:813–820

    Google Scholar 

  • DeWoody JA, Chesser RK, Baker RJ (1999) A translocated mitochondrial cytochrome b pseudogene in voles (Rodentia: Microtus). J Mol Evol 48:380–382

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi M, Shikanai T, Kossykh VG, Yamada Y (1991) Analysis of nuclear sequences homologous to the B4 plasmid-like DNA of rice mitochondria: evidence for sequence transfer from mitochondria to nuclei. Curr Genet 20:487–494

    Article  PubMed  CAS  Google Scholar 

  • Gonzales-Barrera S, Garcia-Rubio M, Aguilera A (2002) Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 162:603–614

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of Mammals. J Mol Evol 32:128–144

    Article  PubMed  CAS  Google Scholar 

  • Jaarola M, Searle JB (2004) A highly divergent mitochondrial DNA lineage of Microtus agrestis in southern Europe. Heredity 92:228–234

    Article  PubMed  CAS  Google Scholar 

  • Jaarola M, Martínková N, Gündüz İ, Brunhoff C, Zima J, Nadachowski A, Amori G, Bulatova N, Chondropoulos B, Fraguedakis-Tsolis S, Gonzalez-Esteban J, Lopez-Fuster MJ, Kandaurov AS, Kefelioglu H, Mathias MD, Villate I, Searle JB (2004) Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol Phyl Evol 33:647–663

    Article  CAS  Google Scholar 

  • Kim J-H, Antunes A, Luo S-J, Menninger J, Nash WG, O’Brien SJ, Johnson WE (2006) Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species. Gene 366:292–302

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Subramanian S (2002) Mutation rates in mammalian genomes. PNAS 99:803–808

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:160–163

    Article  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origins of eukaryotes. Annu Rev Genet 33:351–397

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2005) Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet 21:655–663

    Article  PubMed  CAS  Google Scholar 

  • Li W-H, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239

    Article  PubMed  CAS  Google Scholar 

  • Li W-H, Ellsworth DL, Krushkal J, Chang BH-J, Hewett-Emmett D (1996) Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phyl Evol 5:182–817

    Article  CAS  Google Scholar 

  • Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39:174–190

    PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT

    Google Scholar 

  • Martin RA (1989) Arvicolid rodents of the early Pleistocene java local fauna from north-central South Dakota. J Vert Paleontol 9:438–450

    Article  Google Scholar 

  • Maruyama T, Imai HT (1981) Evolutionary rate of the mammalian karyotype. J Theor Biol 90:111–121

    Article  PubMed  CAS  Google Scholar 

  • Matthey R (1973) The chromosome formulae of eutherian mammals. In: Chiarelli AB, Capanna E (eds) Cytotaxonomy and vertebrate evolution. Academic Press, London

    Google Scholar 

  • Mazurok NA, Rubtsova NV, Isaenko AA, Pavlova ME, Slobodyanyuk SY, Nesterova TB, Zakian SM (2001) Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicoliae). Chrom Res 9:107–120

    Article  PubMed  CAS  Google Scholar 

  • Mirol PM, Mascheretti S, Searle JB (2000) Multiple nuclear pseudogenes of mitochondrial cytochrome b in Ctenomys (Caviomoprpha, Rodentia) with either great similarity to or high divergence from the true mitochondrial sequence. Heredity 84:538–547

    Article  PubMed  CAS  Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Brandon M, Wallace DC (2004) Mitochondrial DNA-like sequences in the nucleus (NUMTs): insights into our African origins and the mechanism of foreign DNA integration. Human Mutat 23:125–133

    Article  CAS  Google Scholar 

  • Modi WS (1987) Phylogenetic analyses of chromosomal banding patterns among the Nearctic arvicolidae (Mammalia: Rodentia). Syst Zool 36:109–136

    Article  Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Ann Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833–1837

    PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Google Scholar 

  • Mundy NI, Pissinatti A, Woodruff DS (2000) Multiple nuclear insertions of mitochondrial cytochrome b sequences in callitrichine primates. Mol Biol Evol 17:1075–1080

    PubMed  CAS  Google Scholar 

  • Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal species of the world, 3rd edn. John Hopkins University Press, Baltimore

    Google Scholar 

  • Nachman MW, Crowell SL (2000) Estimate of mutation rate per nucleotide in humans. Genetics 156:297–304

    PubMed  CAS  Google Scholar 

  • Noutsos C, Richly E, Leister D (2005) Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Res 15:616–628

    Article  PubMed  CAS  Google Scholar 

  • Perna N, Kocher TD (1996) Michondrial DNA: molecular fossils in the nucleus. Curr Biol 6:128–129

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A, Bromham L (1998) Estimating divergence dates from molecular sequences. Mol Biol Evol 15:442–448

    PubMed  CAS  Google Scholar 

  • Rat Genome Sequencing Project Consortium (2004) Genome sequences of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Google Scholar 

  • Reig OA (1989) Karyotypic repatterning as one triggering factor in cases of explosive speciation. In: Fontdevila A (ed) Evolutionary biology of transient unstable populations. Springer-Verlag, New York

    Google Scholar 

  • Repenning CA (1980) Faunal exchanges between Siberia and North America. Can J Anthrop 1:37–44

    Google Scholar 

  • Repenning CA (1987) Biochronology of the Microtine rodents of the United States. In: Woodburne MO (ed) Cenozoic mammals of North America. University of California Press, Berkeley

    Google Scholar 

  • Repenning CA (1990) Of mice and ice in the late Pliocene of North America. Arctic 43:314–323

    Google Scholar 

  • Ricchetti M, Fairhead C, Dujon B (1999) Mitochondrial DNA repairs double-stranded breaks in yeast chromosomes. Nature 402:96–100

    Article  PubMed  CAS  Google Scholar 

  • Ricchetti M, Tekaia F, Dujon B (2004) Continued colonization of the human genome by mitochondrial DNA. PLOS Biol 2:e273

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schmitz J, Piskurek O, Zischler H (2005) Forty million years of independent evolution: a mitochondrial gene and its corresponding nuclear pseudogene in primates. J Mol Evol 61:1–11

    Article  PubMed  CAS  Google Scholar 

  • Smit AFA, Hubley R, Green P (1996–2004) RepeatMasker Open-3.0. <http://www.repeatmasker.org>

  • Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimation of rapid radiations in Muroid rodents based on multiple nuclear genes. Syst Biol 53:533–553

    Article  PubMed  Google Scholar 

  • Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. PNAS 98:5099–5103

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

  • Tourmen Y, Baris O, Dessen P, Jacques C, Malthièry Y, Reynier P (2002) Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80:71–77

    Article  PubMed  CAS  Google Scholar 

  • Triant DA, DeWoody JA (2006) Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences. Genetica 128:95–108

    Article  PubMed  CAS  Google Scholar 

  • Willett-Brozick JE, Savul SA, Richey LE, Baysal BE (2001) Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum Genet 109:216–223

    Article  PubMed  CAS  Google Scholar 

  • Woischnik M, Moraes CT (2002) Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885–893

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Yoder AD (1999) Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48:274–283

    Article  PubMed  CAS  Google Scholar 

  • Zhang D-X, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol 11:247–251

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Natural Science Research Laboratory in The Museum of Texas Tech University, The University of Alaska Museum, The Museum of Southwestern Biology, and The Museum of Vertebrate Zoology at Berkeley for loaning us the tissue necessary for this study. We thank David Bos, Joe Busch, Jill Detwiler, Dave Glista, David Gopurenko, Maarit Jaarola, Emily Latch, Jamie Rudnick, Sara Turner, Rod Williams and anonymous reviewer for comments on an earlier version of this manuscript. Our lab is funded in part by the USDA, the NSF, and Purdue University. This work is contribution number 2006-17842 from Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah A. Triant.

Additional information

All sequences generated in this study have been deposited within the GenBank database.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triant, D.A., DeWoody, J.A. Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents. Genetica 132, 21–33 (2008). https://doi.org/10.1007/s10709-007-9145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9145-6

Keywords

Navigation