Skip to main content
Log in

Physical mapping of 5S and 45S rDNA loci in pufferfishes (Tetraodontiformes)

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Chromosomal features, location and variation of the major and minor rDNA genes cluster were studied in three pufferfish species: Sphoeroides greeleyi and Sphoeroides testudineus (Tetraodontidae) and Cyclichthys spinosus (Diodontidae). The location of the major rDNA was revealed with an 18S probe in two loci for all species. The minor rDNA loci (5S rDNA) was found in one chromosome pair in tetraodontid fishes and four sites located on two distinct chromosomal pairs in C. spinosus. A syntenical organization was not observed among the ribosomal genes. Signal homogeneity for GC/AT-DNA specific fluorochromes was observed in diodontid fish except in the NORs regions, which were CMA3-positive. Giemsa karyotypes of tetraodontid species presents 2n = 46, having the same diploid value of other Sphoeroides species that have been investigated. On the other hand, the karyotype of C. spinosus, described for the first time, shows 2n = 50 chromosomes (4m + 18sm + 12st + 16a). The foreknowledge of the karyotypic structure of this group and also the physical mapping of certain genes could be very helpful for further DNA sequence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya CT, Gold JR (1986) Chromomycin A3 stains nucleolus organizer regions of fish chromosomes. Copeia 1:226–231

    Article  Google Scholar 

  • Artoni RF, Molina WF, Bertollo LAC, Galetti PM Jr (1999) Heterochromatin analysis in the fish species Liposarcus anisitsi (Siluriformes) and Leporinus elongatus (Characiformes). Genet Mol Biol 22:39–44

    Article  Google Scholar 

  • Brainerd EL, Slutz SS, Hall EK, Phillis RW (2001) Patterns of genome size evolution in Tetraodontiform fishes. Evolution 55:2363–2368

    PubMed  CAS  Google Scholar 

  • Brum MJI, Mota LCG (2002) C-banding and nucleolar organizer regions of Sphoeroides greeleyi (Tetraodontidae, Tetraodontiformes). Caryologia 55:171–174

    Google Scholar 

  • Brum MJI, Oliveira CC, Galetti PM Jr (1995) Cytogenetic studies of two puffer species (Sphoeroides, Tetraodontidae) from Rio de Janeiro coast, Brazil. Cytologia 60:369–374

    Google Scholar 

  • Cano J, Thode G, Alvarez MC (1982) Karyoevolutive considerations in 29 Mediterranean Teleosts fishes. Vie Milieu 32:21–24

    Google Scholar 

  • Choudhury RC, Prasad R, Das CC (1982) Karyological studies in five tetraodontiform fishes from the Indian Ocean. Copeia 3:728–732

    Article  Google Scholar 

  • Dover GA (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165

    Article  CAS  Google Scholar 

  • Fenocchio AS, Venere PC, Cesar ACG, Dias AL, Bertollo LAC (1991) Short term culture from solid tissues of fishes. Caryologia 44:161–166

    Google Scholar 

  • Ferro DA, Neo DM, Moreira-Filho O, Bertollo LAC (2001) Nucleolar organizing regions, 18S and 5S rDNA in Astyanax scabripinnis (Pisces, Characidae): populations distribution and functional diversity. Genetica 110:55–62

    Article  Google Scholar 

  • Fischer C, Ozouf-Costaz C, Crollius HR, Dasilva C, Jaillon O, Bouneau L, Bonillo C, Weissenbach J, Bernot A (2000) Karyotype and chromosomal location of characteristic tandem repeats in the pufferfish Tetraodon nigroviridis. Cytogenet Cell Genet 88:50–55

    Article  PubMed  CAS  Google Scholar 

  • Galetti PM Jr, Aguilar CT, Molina W (2000) An overview of marine fish cytogenetics. Hydrobiologia 420:55–62

    Article  Google Scholar 

  • Hatanaka T, Galetti PM Jr (2004) Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 122:239–244

    Article  PubMed  CAS  Google Scholar 

  • Hinegardner R, Rosen DE (1972) Cellular DNA content of sharks, rays and some other fishes. Comp Biochem Physiol 106:621–644

    CAS  Google Scholar 

  • Holcroft NI (2004) A molecular test of alternative hypotheses of tetraodontiform (Acanthomorpha: Tetraodontiformes) sister group relationships using data from the RAG1 gene. Mol Phylogenet Evol 32:749–760

    Article  PubMed  CAS  Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015

    Article  PubMed  CAS  Google Scholar 

  • Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Mandrioli M, Manicardi GC (2001) Cytogenetics and molecular analysis of the pufferfish Tetraodon fluviatilis (Osteichthyes). Genetica 111:433–438

    Article  PubMed  CAS  Google Scholar 

  • Martínez JL, Morán P, García-Vázquez E, Pendás AM (1996) Chromosomal localization of the major and 5S rRNA genes in the European eel (Anguilla anguilla). Cytogenet Cell Genet 73:149–152

    PubMed  Google Scholar 

  • Martins C, Galetti PM Jr (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anastomidae, Characiformes). Chrom Res 7:363–367

    Article  PubMed  CAS  Google Scholar 

  • Martins C, Galetti PM Jr (2001) Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes? Genetica 111:439–446

    Article  PubMed  CAS  Google Scholar 

  • Móran P, Martínez JL, García-Vazquez E, Pendás AM (1996) Sex linkage of 5S rDNA in rainbow trout (Oncorhynchus mykiss). Cytogenet Cell Genet 75:145–150

    PubMed  Google Scholar 

  • Nelson JS (1994) Fishes of the World, John Wiley, NY

  • Pendás AM, Móran P, García-Vazquez E (1993). Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic salmon. Cytogenet Cell Genet 63:128–130

    PubMed  Google Scholar 

  • Pendás AM, Móran P, Freije JP, García-Vazquez E (1994) Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. Cytogenet Cell Genet 67:31–36

    PubMed  Google Scholar 

  • Prokopowich DC, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48–50

    Article  PubMed  CAS  Google Scholar 

  • Rab PKM, Reed FA, Ponce L, Phillips RB (1996) A new method for detection nucleolus organizer regions in fish chromosomes using denaturation and propidium iodide staining. Biotech Histochem 71:157–162

    PubMed  CAS  Google Scholar 

  • Sá-Gabriel L, Molina WF (2005) Karyotype diversification in fishes of the Balistidae, Diodontidae and Tetraodontidae (Tetraodontiformes). Caryologia 58:229–237

    Google Scholar 

  • Sajdak SL, Reed KM, Phillips RB (1998) Intraindividual and interspecies variation in the 5S rDNA of coregonid fish. J␣Mol Evol 46:680–688

    Article  PubMed  CAS  Google Scholar 

  • Schmid M (1980) Chromosome banding in Amphibia. Differentiation of GC and AT rich chromosomes regions in Anura. Chromosoma 77:83–103

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Vitelli L, Batistoni R (1987). Chromosome banding in Amphibia. IV. Constitutive heterochromatin, nucleolus organizers, 18S + 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95:271–284

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D (1980) Simultaneous fluorescent staining of R-bands and specific heterochromatic regions (DAPI bands) in human chromosomes. Cytogenet Cell Genet 27:190–193

    PubMed  CAS  Google Scholar 

  • Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C band patterns. Chrom Today 9:61–74

    Google Scholar 

  • Suzuki H, Sakurai S, Matsuda Y (1996) Rat rDNA spacer sequences and chromosomal assignment of the genes to the extreme terminal region of chromosome 19. Cytogenet Cell Genet 72:1–4

    Article  PubMed  CAS  Google Scholar 

  • Tyler JC (1980) Osteology, phylogeny and higher classification of the fishes of the order Plectognathi (Tetraodontiformes). NOAA Techn Rep Nat Mar Fish Circ 434:1–422

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Julio Cesar Pieczarka for the careful revision of the manuscript and Dr. Luiz Antonio Carlos Bertollo, Universidade Federal de São Carlos for thechnical assistance and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). This research was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Bueno Noleto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noleto, R.B., Vicari, M.R., Cipriano, R.R. et al. Physical mapping of 5S and 45S rDNA loci in pufferfishes (Tetraodontiformes). Genetica 130, 133–138 (2007). https://doi.org/10.1007/s10709-006-9000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-9000-1

Keywords

Navigation