Skip to main content
Log in

The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Mariner family transposons are perhaps the most widespread transposable elements of eukaryotes. While we are beginning to understand the precise mechanism of transposition of these elements, the structure of their transposases are still poorly understood. We undertook an extensive mutagenesis of the N-terminal third of the transposase of the Himar1 mariner transposon to begin the process of determining the structure and evolution of mariner transposases. N and C-terminal deletion analyses localized the DNA binding domain of Himar1 transposase to the first 115 amino acids. Alanine scanning of 23 selected sites within this region uncovered mutations that not only affected DNA binding but DNA cleavage as well. The behavior of other mutations strongly suggested that the N-terminus is also involved in multimerization of the transposase on a single inverted terminal repeat and in paired ends complex formation which brings together the two ends of the transposon. Finally, two hyperactive mutations at conserved sites suggest that mariner transposases are under a pattern of stabilizing selection in nature with regard to how efficiently they mediate transposition, resulting in a population of “average” transposons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.J. Akerley D.J. Lampe (2002) ArticleTitleAnalysis of gene function in bacterial pathogens by GAMBIT Methods Enzymol. 358 100–108 Occurrence Handle12474380 Occurrence Handle1:CAS:528:DC%2BD3sXhtVWhsr0%3D Occurrence Handle10.1016/S0076-6879(02)58082-4

    Article  PubMed  CAS  Google Scholar 

  • S.A. Ali A. Steinkasserer (1995) ArticleTitlePCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations Biotechniques 18 IssueID5 746–750 Occurrence Handle7619468 Occurrence Handle1:CAS:528:DyaK2MXlsFyrsro%3D

    PubMed  CAS  Google Scholar 

  • C. Auge-Gouillou B. Brillet S. Germon M.H. Hamelin Y. Bigot (2005) ArticleTitleMariner Mos1 transposase dimerizes prior to ITR binding J. Mol. Biol. 351 IssueID1 117–130 Occurrence Handle15992822 Occurrence Handle1:CAS:528:DC%2BD2MXmt1Wgs7g%3D Occurrence Handle10.1016/j.jmb.2005.05.019

    Article  PubMed  CAS  Google Scholar 

  • C. Auge-Gouillou B. Brillet M.H. Hamelin Y. Bigot (2005) ArticleTitleAssembly of the mariner Mos1 synaptic complex Mol. Cell Biol. 25 IssueID7 2861–2870 Occurrence Handle15767689 Occurrence Handle1:CAS:528:DC%2BD2MXis12ju7Y%3D Occurrence Handle10.1128/MCB.25.7.2861-2870.2005

    Article  PubMed  CAS  Google Scholar 

  • C. Auge-Gouillou M.H. Hamelin M.V. Demattei G. Periquet Y. Bigot (2001) ArticleTitleThe ITR binding domain of the Mariner Mos-1 transposase Mol. Genet. Genom. 265 IssueID1 58–65 Occurrence Handle1:CAS:528:DC%2BD3MXjsVegu7g%3D Occurrence Handle10.1007/s004380000386

    Article  CAS  Google Scholar 

  • E.G. Barry D.J. Witherspoon D.J. Lampe (2004) ArticleTitleA bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia Genetics 166 IssueID2 823–833 Occurrence Handle15020471 Occurrence Handle1:CAS:528:DC%2BD2cXjtlynt7c%3D Occurrence Handle10.1534/genetics.166.2.823

    Article  PubMed  CAS  Google Scholar 

  • E.L. Beall M.B. Mahoney D.C. Rio (2002) ArticleTitleIdentification and analysis of a hyperactive mutant form of Drosophila P-element transposase Genetics 162 IssueID1 217–227 Occurrence Handle12242235 Occurrence Handle1:CAS:528:DC%2BD38Xotl2gs7c%3D

    PubMed  CAS  Google Scholar 

  • S. Bolland N. Kleckner (1996) ArticleTitleThe three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site Cell 84 IssueID2 223–233 Occurrence Handle8565068 Occurrence Handle1:CAS:528:DyaK28Xnt1ehuw%3D%3D Occurrence Handle10.1016/S0092-8674(00)80977-0

    Article  PubMed  CAS  Google Scholar 

  • N.L. Craig (1995) ArticleTitleUnity in transposition reactions Science 270 IssueID5234 253–254 Occurrence Handle7569973 Occurrence Handle1:CAS:528:DyaK2MXoslehsrk%3D

    PubMed  CAS  Google Scholar 

  • A. Dawson D.J. Finnegan (2003) ArticleTitleExcision of the Drosophila mariner transposon Mos1. Comparison with bacterial transposition and V(D)J recombination Mol. Cell 11 IssueID1 225–235 Occurrence Handle12535535 Occurrence Handle1:CAS:528:DC%2BD3sXhtFagsrk%3D Occurrence Handle10.1016/S1097-2765(02)00798-0

    Article  PubMed  CAS  Google Scholar 

  • W.R. Engels W.K. Benz C.R. Preston P.L. Graham R.W. Phillis H.M. Robertson (1987) ArticleTitleSomatic effects of P element activity in Drosophila melanogaster: pupal lethality Genetics 117 IssueID4 745–757 Occurrence Handle2828158 Occurrence Handle1:CAS:528:DyaL1cXmvFOgtw%3D%3D

    PubMed  CAS  Google Scholar 

  • C. Feschotte L. Swamy S.R. Wessler (2003) ArticleTitleGenome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs) Genetics. 163 IssueID2 747–758 Occurrence Handle12618411 Occurrence Handle1:CAS:528:DC%2BD3sXislWjurs%3D

    PubMed  CAS  Google Scholar 

  • S.D. Fugmann A.I. Lee P.E. Shockett I.J. Villey D.G. Schatz (2000) ArticleTitleThe RAG proteins and V(D)J recombination: complexes, ends, and transposition Annu. Rev. Immunol. 18 495–527 Occurrence Handle10837067 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Gmtr4%3D Occurrence Handle10.1146/annurev.immunol.18.1.495

    Article  PubMed  CAS  Google Scholar 

  • I.Y. Goryshin W.S. Reznikoff (1998) ArticleTitleTn5 in vitro transposition J. Biol. Chem. 273 IssueID13 7367–7374 Occurrence Handle9516433 Occurrence Handle1:CAS:528:DyaK1cXit1emuro%3D Occurrence Handle10.1074/jbc.273.13.7367

    Article  PubMed  CAS  Google Scholar 

  • L.M. Guzman D. Belin M.J. Carson J. Beckwith (1995) ArticleTitleTight regulation, modulation, and high-level expression by vectors containing the Arabinose PBAD promoter J. Bacteriol. 177 IssueID14 4121–4130 Occurrence Handle7608087 Occurrence Handle1:CAS:528:DyaK2MXmvV2gtL8%3D

    PubMed  CAS  Google Scholar 

  • D.L. Hartl A.R. Lohe E.R. Lozovskaya (1997a) ArticleTitleModern thoughts on an ancient mariner: function, evolution, regulation Annu. Rev. Genet. 31 337–358 Occurrence Handle1:CAS:528:DyaK1cXhtlGmtg%3D%3D Occurrence Handle10.1146/annurev.genet.31.1.337

    Article  CAS  Google Scholar 

  • D.L. Hartl A.R. Lohe E.R. Lozovskaya (1997b) ArticleTitleRegulation of the transposable element mariner Genetica 100 IssueID1–3 177–184 Occurrence Handle1:CAS:528:DyaK1cXkslWlsQ%3D%3D Occurrence Handle10.1023/A:1018333629222

    Article  CAS  Google Scholar 

  • D.L. Hartl E.R. Lozovskaya D.I. Nurminsky A.R. Lohe (1997) ArticleTitleWhat restricts the activity of mariner-like transposable elements Trends Genet. 13 IssueID5 197–201 Occurrence Handle9154003 Occurrence Handle1:CAS:528:DyaK2sXjtVCqurk%3D Occurrence Handle10.1016/S0168-9525(97)01087-1

    Article  PubMed  CAS  Google Scholar 

  • O. Huisman N. Kleckner (1987) ArticleTitleA new generalizable test for detection of mutations affecting Tn10 transposition Genetics 116 IssueID2 185–189 Occurrence Handle3038669 Occurrence Handle1:CAS:528:DyaL2sXkslajtbg%3D

    PubMed  CAS  Google Scholar 

  • Z. Izsvak D. Khare J. Behlke U. Heinemann R.H. Plasterk Z. Ivics (2002) ArticleTitleInvolvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition J. Biol. Chem. 277 IssueID37 34,581–34,588 Occurrence Handle1:CAS:528:DC%2BD38Xnt1WisL4%3D Occurrence Handle10.1074/jbc.M204001200

    Article  CAS  Google Scholar 

  • M.P. Krebs W.S. Reznikoff (1988) ArticleTitleUse of a Tn5 derivative that creates lacZ translational fusions to obtain a transposition mutant Gene 63 IssueID2 277–285 Occurrence Handle2838392 Occurrence Handle1:CAS:528:DyaL1cXktFOrsr4%3D Occurrence Handle10.1016/0378-1119(88)90531-8

    Article  PubMed  CAS  Google Scholar 

  • D.J. Lampe B.J. Akerley E.J. Rubin J.J. Mekalanos H.M. Robertson (1999) ArticleTitleHyperactive transposase mutants of the Himar1 mariner transposon Proc. Natl. Acad. Sci. U.S.A. 96 IssueID20 11,428–11,433 Occurrence Handle1:CAS:528:DyaK1MXmvVCmtr8%3D Occurrence Handle10.1073/pnas.96.20.11428

    Article  CAS  Google Scholar 

  • D.J. Lampe M.E. Churchill H.M. Robertson (1996) ArticleTitleA purified mariner transposase is sufficient to mediate transposition Embo. J. 15 IssueID19 5470–5479 Occurrence Handle8895590 Occurrence Handle1:CAS:528:DyaK28XmsVehs74%3D

    PubMed  CAS  Google Scholar 

  • D.J. Lampe T.E. Grant H.M. Robertson (1998) ArticleTitleFactors affecting transposition of the Himar1 mariner transposon in vitro Genetics 149 IssueID1 179–187 Occurrence Handle9584095 Occurrence Handle1:CAS:528:DyaK1cXks1ekt7g%3D

    PubMed  CAS  Google Scholar 

  • D.J. Lampe D.J. Witherspoon F.N. Soto-Adames H.M. Robertson (2003) ArticleTitleRecent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer Mol. Biol. Evol. 20 IssueID4 554–562 Occurrence Handle12654937 Occurrence Handle1:CAS:528:DC%2BD3sXkvFCns70%3D Occurrence Handle10.1093/molbev/msg069

    Article  PubMed  CAS  Google Scholar 

  • E.S. Lander L.M. Linton B. Birren C. Nusbaum M.C. Zody J. Baldwin K. Devon K. Dewar et al. (2001) ArticleTitleInitial sequencing and analysis of the human genome Nature 409 IssueID6822 860–921 Occurrence Handle11237011 Occurrence Handle1:CAS:528:DC%2BD3MXhsFCjtLc%3D Occurrence Handle10.1038/35057062

    Article  PubMed  CAS  Google Scholar 

  • K. Lipkow N. Buisine D.J. Lampe R. Chalmers (2004) ArticleTitleEarly intermediates of mariner transposition: catalysis without synapsis of the transposon ends suggests a novel architecture of the synaptic complex Mol. Cell. Biol. 24 IssueID18 8301–8311 Occurrence Handle15340089 Occurrence Handle1:CAS:528:DC%2BD2cXnslCrtrY%3D Occurrence Handle10.1128/MCB.24.18.8301-8311.2004

    Article  PubMed  CAS  Google Scholar 

  • A.R. Lohe D.L. Hartl (1996) ArticleTitleAutoregulation of mariner transposase activity by overproduction and dominant-negative complementation Mol. Biol. Evol. 13 IssueID4 549–555 Occurrence Handle8882498 Occurrence Handle1:CAS:528:DyaK28XhvFyisbw%3D

    PubMed  CAS  Google Scholar 

  • V. McGrane J.O. Carlson B.R. Miller B.J. Beaty (1988) ArticleTitleMicroinjection of DNA into Aedes triseriatus ova and detection of integration Am. J. Trop. Med. Hyg. 39 IssueID5 502–510 Occurrence Handle3195697 Occurrence Handle1:CAS:528:DyaL1MXntVClsg%3D%3D

    PubMed  CAS  Google Scholar 

  • T.A. Naumann W.S. Reznikoff (2000) ArticleTitleTrans catalysis in Tn5 transposition Proc. Natl. Acad. Sci. U.S.A. 97 IssueID16 8944–8949 Occurrence Handle10908658 Occurrence Handle1:CAS:528:DC%2BD3cXls12lurw%3D Occurrence Handle10.1073/pnas.160107997

    Article  PubMed  CAS  Google Scholar 

  • S. Pietrokovski S. Henikoff (1997) ArticleTitleA helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons Mol. Gen. Genet. 254 IssueID6 689–695 Occurrence Handle9202385 Occurrence Handle1:CAS:528:DyaK2sXksFWjsb4%3D Occurrence Handle10.1007/s004380050467

    Article  PubMed  CAS  Google Scholar 

  • S. Rea F. Eisenhaber D. O’Carroll B.D. Strahl Z.W. Sun M. Schmid S. Opravil K. Mechtler et al. (2000) ArticleTitleRegulation of chromatin structure by site-specific histone H3 methyltransferases Nature 406 IssueID6796 593–599 Occurrence Handle10949293 Occurrence Handle1:CAS:528:DC%2BD3cXmtFegs7s%3D Occurrence Handle10.1038/35020506

    Article  PubMed  CAS  Google Scholar 

  • H.M. Robertson (1995) ArticleTitleThe Tc1-mariner superfamily of transposons in animals J. Insect Physiol. 41 IssueID2 99–105 Occurrence Handle1:CAS:528:DyaK2MXktlKhsrc%3D Occurrence Handle10.1016/0022-1910(94)00082-R

    Article  CAS  Google Scholar 

  • H.M. Robertson M.L. Asplund (1996) ArticleTitleBmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori Insect Biochem. Mol. Biol. 26 IssueID8–9 945–954 Occurrence Handle9014339 Occurrence Handle1:CAS:528:DyaK2sXhtVyksb0%3D Occurrence Handle10.1016/S0965-1748(96)00061-6

    Article  PubMed  CAS  Google Scholar 

  • H.M. Robertson D.J. Lampe (1995) ArticleTitleRecent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera Mol. Biol. Evol. 12 IssueID5 850–862 Occurrence Handle7476131 Occurrence Handle1:CAS:528:DyaK2MXns1yqsbc%3D

    PubMed  CAS  Google Scholar 

  • H.M. Robertson R. Martos (1997) ArticleTitleMolecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage Gene 205 IssueID1–2 219–228 Occurrence Handle9461396 Occurrence Handle1:CAS:528:DyaK1cXmtlWisA%3D%3D Occurrence Handle10.1016/S0378-1119(97)00471-X

    Article  PubMed  CAS  Google Scholar 

  • H.M. Robertson K.L. Zumpano (1997) ArticleTitleMolecular evolution of an ancient mariner transposon, Hsmar1, in the human genome Gene 205 IssueID1–2 203–217 Occurrence Handle9461395 Occurrence Handle1:CAS:528:DyaK1cXmtlWjsA%3D%3D Occurrence Handle10.1016/S0378-1119(97)00472-1

    Article  PubMed  CAS  Google Scholar 

  • H. Shao Z. Tu (2001) ArticleTitleExpanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons Genetics 159 IssueID3 1103–1115 Occurrence Handle11729156 Occurrence Handle1:STN:280:DC%2BD3Mnot1Onug%3D%3D

    PubMed  CAS  Google Scholar 

  • L.R. Tosi S.M. Beverley (2000) ArticleTitle Cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics Nucleic Acids Res. 28 IssueID3 784–790 Occurrence Handle10637331 Occurrence Handle1:CAS:528:DC%2BD3cXhtVSnt70%3D Occurrence Handle10.1093/nar/28.3.784

    Article  PubMed  CAS  Google Scholar 

  • G. Pouderoyen Particlevan R.F. Ketting A. Perrakis R.H. Plasterk T.K. Sixma (1997) ArticleTitleCrystal structure of the specific DNA-binding domain of Tc3 transposase of C. elegans in complex with transposon DNA Embo. J. 16 IssueID19 6044–6054 Occurrence Handle9312061 Occurrence Handle10.1093/emboj/16.19.6044

    Article  PubMed  Google Scholar 

  • S.R. Yant J. Park Y. Huang J.G. Mikkelsen M.A. Kay (2004) ArticleTitleMutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells Mol. Cell Biol. 24 IssueID20 9239–9247 Occurrence Handle15456893 Occurrence Handle1:CAS:528:DC%2BD2cXotl2mu70%3D Occurrence Handle10.1128/MCB.24.20.9239-9247.2004

    Article  PubMed  CAS  Google Scholar 

  • L. Zhang A. Dawson D.J. Finnegan (2001) ArticleTitleDNA-binding activity and subunit interaction of the mariner transposase Nucleic Acids Res. 29 IssueID17 3566–3575 Occurrence Handle11522826 Occurrence Handle1:CAS:528:DC%2BD3MXotlWgsL4%3D Occurrence Handle10.1093/nar/29.17.3566

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Lampe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, M.G., Chakraborty, S.A. & Lampe, D.J. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition. Genetica 127, 351–366 (2006). https://doi.org/10.1007/s10709-006-6250-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-6250-x

Keywords

Navigation