Skip to main content
Log in

Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Diversification and speciation processes are influenced by intrinsic (ecological specialization, dispersal) and extrinsic (habitat structure and instability) factors, but the effect of ecological characteristics on dispersal is difficult to assess. This study uses mitochondrial control region sequences to investigate the population structure and demographic history of the endemic Lake Tanganyika cichlid Neolamprologus caudopunctatus with a preference for the rock-sand interface along two stretches of continuous, rocky shoreline, and across a sandy bay representing a potential dispersal barrier. Populations along uninterrupted habitat were not differentiated; whereas, the sandy bay separated two reciprocally monophyletic clades. The split between the two clades between 170,000 and 260,000 years BP coincides with a period of rising water level following a major lowstand, and indicates that clades remained isolated throughout subsequent lake level fluctuations. Low long-term effective population sizes were inferred from modest genetic diversity estimates, and may be due to recent population expansions starting from small population sizes 45,000–60,000 years BP. Comparisons with available data from specialized rock-dwelling species of the␣same area suggest that habitat structure and lake level fluctuations determine phylogeographic patterns on large scales, while fine-scale population structure and demography are modulated by species-specific ecologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbogast BS, Kenagy GJ (2001) Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 28:819–825

    Article  Google Scholar 

  • Arnegard ME, Markert JA, Danley PD, Stauffer JR Jr, Ambali AJ, Kocher TD (1999) Population structure and colour variation of the cichlid fish Labeotropheus fuelleborni Ahl along a recently formed archipelago of rocky habitat patches in southern Lake Malawi. Proc R Soc Lond B 266:119–130

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts and London, UK

    Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and applications. Mol Ecol 7:367–369

    Article  Google Scholar 

  • Brandstätter A, Salzburger W, Sturmbauer C (2005) Mitochondrial phylogeny of the Cyprichromini, a lineage of open-water cichlid fishes endemic to Lake Tanganyika, East Africa. Mol Phylogen Evol 34:382–391

    Article  CAS  Google Scholar 

  • Brouat C, Sennedot F, Audiot P, Lebois R, Rasplus J (2003) Fine-scale genetic structure of two carabid species with contrasted levels of habitat specialization. Mol Ecol 7:1731–1745

    Article  Google Scholar 

  • Campbell P, Schneider CJ, Adnan AM, Zubaid A, Kunz TH (2006) Comparative population structure of Cynopterus fruit bats in peninsular Malaysia and southern Thailand. Mol Ecol 15:29–47

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Cohen AS, Soreghan MJ (1993) Estimating the age of ancient lakes: an example from Lake Tanganyika, East African rift system. Geology 21:511–514

    Article  CAS  Google Scholar 

  • Cohen AS, Lezzar KE, Tiercelin JJ, Soreghan M (1997) New palaeographic and lake-level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in a rift lake. Basin Res 9:107–132

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and evaluation of two tests for detecting recent bottlenecks. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Danley PD, Markert JA, Arnegard ME, Kocher TD (2000) Divergence with gene flow in the rock-dwelling cichlids of Lake Malawi. Evolution 54:1725–1737

    PubMed  CAS  Google Scholar 

  • Danley PD, Kocher TD (2001) Speciation in rapidly diverging systems: lessons from Lake Malawi. Mol Ecol 10:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Duftner N, Koblmüller S, Sturmbauer C (2005) Evolutionary relationships of the Limnochromini, a tribe of benthic deepwater cichlid fish endemic to Lake Tanganyika, East Africa. J Mol Evol 60:277–289

    Article  PubMed  CAS  Google Scholar 

  • Duftner N, Sefc KM, Koblmüller S, Nevado B, Verheyen E, Sturmbauer C (2006) Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika. Mol Ecol (in press) Early online issue available: doi:10.1111/j.1365-294X.2006.02949.x

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecularvariance inferred from metric distances among DNA haplotypes:application to the human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Gasse F, Lédée V, Massault M, Fontes J-C (1989) Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342:57–59

    Article  Google Scholar 

  • Genner MG, Turner GF (2005) The mbuna cichlids of Lake Malawi: a model for rapid speciation and adaptive radiation. Fish Fish 6:1–34

    Google Scholar 

  • Hasegawa M, Kishino T, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Koblmüller S, Salzburger W, Sturmbauer C (2004) Evolutionary relationships in the sand dwelling cichlid lineage of Lake Tanganyika suggest multiple colonization of rocky habitats and convergent origin of biparental mouthbrooding. J Mol Evol 58:79–96

    Article  PubMed  CAS  Google Scholar 

  • Koblmüller S, Duftner N, Katongo C, Phiri H, Sturmbauer C (2005) Ancient divergence in bathypelagic Lake Tanganyika deepwater cichlids: mitochondrial phylogeny of the tribe Bathybatini. J Mol Evol 60:297–314

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nature Rev Gen 5:288–298

    Article  CAS  Google Scholar 

  • Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fishes in Lakes Tanganyika and Malawi are due to convergence. Mol Phylogen Evol 4:420–432

    Article  Google Scholar 

  • Kohda M, Yanagisawa Y, Sato T, Nakaya K, Nimura Y, Matsumoto K, Ochi H (1996) Geographical color variation in cichlid fishes at the southern end of Lake Tanganyika. Env Biol Fish 45:237–248

    Article  Google Scholar 

  • Konings A (1998) Tanganyika cichlids in their natural habitat. Cichlid Press, El Paso

    Google Scholar 

  • Kornfield I, Smith PF (2000) African cichlid fishes: model systems for evolutionary biology. Ann Rev Ecol Syst 31:163–198

    Article  Google Scholar 

  • Kuhner MK, Yamato J, Felsenstein J (1998) Maximum likelihood estimation of population growth rates based on the coalescent. Genetics 149:429–434

    PubMed  CAS  Google Scholar 

  • Lee W-J, Conroy J, Huntting Howell W, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66

    Article  PubMed  CAS  Google Scholar 

  • Lezzar KE, Tiercelin JJ, De Batist M, Cohen AS, Bandora R, Van Rensbergen C, Le Turdu C, Mifundu W, Klerkx J (1996) New seismic stratigraphy and Late Tertiary history of the North Tanganyika basin, East African rift system deduced from multichannel and high-piston core evidence. Basin Res 8:1–28

    Google Scholar 

  • Lourie SA, Green DM, Vincent ACJ (2005) Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae: Hippocampus). Mol Ecol 14:1073–1094

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  PubMed  CAS  Google Scholar 

  • Markert JA, Arnegard ME, Danley PD, Kocher TD (1999) Biogeography and population genetics of the Lake Malawi cichlid Melanochromis auratus: habitat transience, philopatry and speciation. Mol Ecol 8:1013–1026

    Article  Google Scholar 

  • McKaye KR, Gray WM (1984) Extrinsic barriers to gene flow in rock-dwelling cichlids of Lake Malawi: macrohabitat heterogeneity and reef colonization. In: Echelle AA, Kornfield I (eds) Evolution of fish species flocks. University of Maine at Orono Press, Orono, Maine, pp. 169–183

    Google Scholar 

  • Meyer A (1993) Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends Ecol Evol 8:279–284

    Article  Google Scholar 

  • Meyer A, Morrissey JM, Schartl M (1994) Recurrent origin of sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 368:539–541

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov Chain Monte Carlo Approach. Genetics 158:885–896

    PubMed  CAS  Google Scholar 

  • Pereyra R, Taylor MI, Turner GF, Rico C (2004) Variation in habitat preference and population structure among three species of the Lake Malawi cichlid genus Protomelas. Mol Ecol 12:2691–2697

    Article  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1997) BOTTLENECK: A program for detecting recent effective population size reductions from allele frequency data. Laboratoire de Modélisation et de Biologie Evolutive, INRA-URLB, Monpellier, France

  • Poll M (1986) Classification des cichlidae du lac Tanganika. Tribus, genres et espèces. Acad R Belg Mem Cl Sci 45:1–163

    Google Scholar 

  • Rico C, Turner GF (2002) Extreme microallopatric divergence in a cichlid species from Lake Malawi. Mol Ecol 11:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Rocha LA, Bass AL, Robertson DR, Brown BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11:243–251

    Article  PubMed  CAS  Google Scholar 

  • Rossiter A (1995) The cichlid fish assemblages of Lake Tanganyika: ecology, behaviour and evolution of its species flocks. Adv Ecol Res 26:187–252

    Article  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Rüber L, Verheyen E, Sturmbauer C, Meyer A (1998) Lake level fluctuations and speciation in rock-dwelling cichlid fish in Lake Tanganyika, East Africa. In: Grant P (eds) Evolution on islands. Oxford University Press, Oxford, UK, pp 225–240

    Google Scholar 

  • Rüber L, Meyer A, Sturmbauer C, Verheyen E (2001) Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression. Mol Ecol 10:1207–1225

    Article  PubMed  Google Scholar 

  • Salzburger W, Meyer A, Baric S, Verheyen E, Sturmbauer C (2002) Phylogeny of the Lake Tanganyika cichlid species flock and its relationships to Central- and East African haplochromine cichlid fish faunas. Syst Biol 51:113–135

    Article  PubMed  Google Scholar 

  • Salzburger W, Meyer A (2004) The species flock of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91:277–290

    Article  PubMed  CAS  Google Scholar 

  • Schelly R, Salzburger W, Koblmüller S, Duftner N, Sturmbauer C (2006) Phylogenetic relationships of the lamprologine cichlid genus Lepidiolamprologus (Teleostei: Perciformes) based on mitochondrial and nuclear sequences, suggesting introgressive hybridization. Mol Phylogen Evol 38:426–438

    Article  CAS  Google Scholar 

  • Schneider CJ, Cunningham M, Moritz C (1998) Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rain forests of Australia. Mol Ecol 7:487–498

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (1999) Arlequin, Version 2.0: a Software for Genetic Analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva

    Google Scholar 

  • Scholz CA, Rosendahl BR (1988) Low lake stands in Lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic data. Science 240:1645–1648

    Article  PubMed  Google Scholar 

  • Scholz CA, King JW, Ellis GS, Swart PK, Stager JC, Colman SM (2003) Paleolimnology of Lake Tanganyika, East Africa, over the past 100 k yr. J Paleolimn 30:139–150

    Article  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Article  PubMed  Google Scholar 

  • Seehausen O, van Alphen JJM (1999) Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecol Lett 2:262–271

    Article  Google Scholar 

  • Seehausen O, Schluter D (2004) Male-male competition and nuptial-colour displacement as a diversifying force in Lake Victoria cichlid fishes. Proc R Soc Lond B 271:1345–1353

    Article  Google Scholar 

  • Shaw PW, Turner GF, Idid MR, Robinson RL, Carvalho GR (2000) Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proc R Scoc Lond B 267:2273–2280

    Article  CAS  Google Scholar 

  • Snoeks J (2000) How well known is the ichthyodiversity of the large East African lakes? Adv Ecol Res 31:17–38

    Google Scholar 

  • Stiassny MLJ (1997) A phylogenetic overview of the lamprologine cichlids of Africa (Teleostei, Cichlidae): a morphological perspective. S Afr J Sci 93:513–523

    Google Scholar 

  • Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126–131

    Article  Google Scholar 

  • Sturmbauer C (1998) Explosive speciation in cichlid fishes of the African Great Lakes: A dynamic model of adaptive radiation. J Fish Biol 53(Suppl. A):18–36

    Article  Google Scholar 

  • Sturmbauer C, Meyer A (1992) Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358:578–581

    Article  PubMed  CAS  Google Scholar 

  • Sturmbauer C, Verheyen E, Meyer A (1994) Mitochondrial phylogeny of the Lamprologini, the major substrate spawning lineage of cichlid fishes from Lake Tanganyika in Eastern Africa. Mol Biol Evol 11:691–703

    PubMed  CAS  Google Scholar 

  • Sturmbauer C, Verheyen E, Rüber L, Meyer A (1997) Phylogeographic patterns in populations of cichlid fishes from rocky habitats in Lake Tanganyika. In: Stepien CA, Kocher TD (eds) Molecular systematics of fishes. Academic Press, San Diego, California, pp 97–111

    Google Scholar 

  • Sturmbauer C, Baric S, Salzburger W, Rüber L, Verheyen E (2001) Lake level fluctuations synchronize genetic divergence of cichlid fishes in African lakes. Mol Biol Evol 18:144–154

    PubMed  CAS  Google Scholar 

  • Sturmbauer C, Koblmüller S, Sefc KM, Duftner N (2005) Phylogeographic history of the genus Tropheus, a lineage of rock-dwelling cichlid fishes endemic to Lake Tanganyika. Hydrobiologia 542:335–366

    Article  Google Scholar 

  • Swofford DL (2001) PAUP* 4.0b10: Phylogenetic analysis using parsimony. Sinauer, Sunderland, Massachusetts

  • Taylor MI, Rüber L, Verheyen E (2001) Microsatellites reveal high levels of population substructuring in the species-poor Eretmodine cichlid lineage. Proc R Soc Lond B 268:803–808

    Article  CAS  Google Scholar 

  • Taylor MI, Verheyen E (2001) Microsatellite data reveals weak population substructuring in Copadichromis sp. “viriginalis kajose”, a demersal cichlid from Lake Malawi, Africa. J Fish Biol 59:593–604

    Google Scholar 

  • Turner GF (1994) Speciation mechanisms in Lake Malawi cichlids: a critical review. Adv Limn 44:139–160

    Google Scholar 

  • Turner GF, Burrows MT (1995) A model of sympatric speciation by sexual selection. Proc R Soc Lond B 260:287–292

    Article  Google Scholar 

  • Turner GF, Seehausen O, Knight KE, Allender CJ, Robinson RL (2001) How many species of cichlid fishes are there in African lakes? Mol Ecol 10:793–806

    Article  PubMed  CAS  Google Scholar 

  • Van Oppen MJH, Turner GF, Rico C, Deutsch JC, Ibrahim KM, Robinson RL, Hewitt GM (1997) Unusually fine-scale genetic structuring found in rapidly speciating Malawi cichlid fishes. Proc R Soc Lond B 264:1803–1812

    Article  Google Scholar 

  • Verheyen E, Salzburger W, Snoeks J, Meyer A (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300:325–329

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Kapasa, P. Ngalande, L. Makasa, R. Sinyinza, R. Shapola, D. Sinyinza, and the team at the Mpulungu Station of the Ministry of Agriculture and Cooperatives, Republic of Zambia as well as L. Mumba, G. Mutenda, and C. Katongo, from the University of Zambia in Lusaka for their cooperation during fieldwork. This study was financed by the Austrian Science Foundation (grants P17680 and P17380). N.D. and S.K. were further supported by the University of Graz. N.D. also received a DOC-FFORTE-fellowship (Women in research and technology), and S.K. a DOC-fellowship, both provided by the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sturmbauer.

Appendix A

Appendix A

Haplotype numbers with according GenBank accession numbers, sampling localities and sample identifications.

Ht. Nr.

Acc. Nr.

Locality

Sample ID

1

DQ628768–DQ628787

Nakaku

2974, 2976, 2985, 2989, 2992, 3050,  3058, 3386

Tongwa

2899, 2900, 2916, 2922

Katukula

2870, 2872, 2883, 2885, 2892, 3374

Funda

3346, 3347

2

DQ628788

Nakaku

2988

3

DQ628789

Nakaku

2991

4

DQ628790

Nakaku

3049

5

DQ628791

Katukula

2880

6

DQ628792

Katukula

2886

7

DQ628793

Funda

3444

8

DQ628794–DQ628804

Nakaku

2987, 3052, 3056

Tongwa

2901, 2904, 2918

Katukula

2868, 2888, 2889, 3296

Katoto

3449

9

DQ628805

Tongwa

2903

10

DQ628806–DQ628830

Nakaku

2973, 2975, 2977, 2990, 3057, 3387

Tongwa

2895, 2898, 2902, 2906, 2907, 2908,  2911, 2913, 2914,  2915, 2917, 2921

Katukula

2869, 2871, 2879, 2882,  2887, 3298, 3299

11

DQ628831–DQ628832

Katukula

2874, 2881

12

DQ628833–DQ628838

Nakaku

3051, 3059, 3060

Tongwa

2893, 2905, 2919

13

DQ628839–DQ628841

Nakaku

3053

Tongwa

2909, 2912

14

DQ628842

Nakaku

3054

15

DQ628843

Nakaku

2972

16

DQ628844

Nakaku

3055

17

DQ628845

Tongwa

2897

18

DQ628846–DQ628851

Katukula

2865, 2866, 2867, 2877, 3372, 3373

19

DQ628852

Katukula

2873

20

DQ628853

Nakaku

2986

21

DQ628854

Mbita Island

3302

22

DQ628855–DQ628858

Wonzye

3164, 3168, 3185, 3393

23

DQ628859–DQ628879

Mbita Island

3085, 3091, 3092, 3100, 3102, 3103,  3105, 3108, 3112,  3119, 3300

Wonzye

3175, 3162, 3165, 3182, 3188,  3189, 3190,  3191, 3305, 3392

24

DQ628880

Mbita Island

3106

25

DQ628881

Mbita Island

3110

26

DQ628882–DQ628884

Mbita Island

3087

Wonzye

3163, 3184

27

DQ628885–DQ628900

Mbita Island

3089, 3101, 3107, 3389

Wonzye

3158, 3159, 3167, 3183, 3186, 3187, 3194,  3195, 3303, 3304,  3390, 3391

28

DQ628901

Wonzye

3161

29

DQ628902–DQ628903

Mbita Island

3084, 3301

30

DQ628904

Wonzye

3160

31

DQ628905–DQ628907

Mbita Island

3090, 3095, 3109

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koblmüller, S., Sefc, K.M., Duftner, N. et al. Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid. Genetica 130, 121–131 (2007). https://doi.org/10.1007/s10709-006-0027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0027-0

Keywords

Navigation