Skip to main content
Log in

Sharing of transcription factors after gene duplication in the yeast Saccharomyces cerevisiae

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In a set of 190 duplicate gene pairs in yeast Saccharomyces cerevisiae, the sharing of transcription factors tended to decrease with increased divergence in coding sequence, at both synonymous and nonsynonymous sites. Our results showed a significantly higher sharing of transcription factors by duplicated gene pairs falling within duplicated genomic blocks than in other duplicated gene pairs; and genes in duplicated blocks also showed significantly greater conservation at the coding sequence level. In spite of the overall trends, there were certain gene pairs, both in duplicated blocks and in other genomic regions, which were highly divergent in coding sequence and yet had identical patterns of transcription factor binding. These results suggest that functional differentiation of genes after duplication is a multi-dimensional process, with different duplicate pairs differentiating in different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe K (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlethwaite J (1998) Preservation of duplicate genes by complementary degenerate mutations. Genetics 151:1531–1545

    Google Scholar 

  • Fraschini R, Bilotta D, Lucchini GG, Piatti S (2004) Functional characterization of Dma1 and Dma2, the budding yeast homologues of Schizosaccharomyces pombe Dma1 and human Chfr. Mol Biol Cell 15:3796–3810

    Article  PubMed  CAS  Google Scholar 

  • Friedman R, Hughes AL (2001) Gene duplication and the structure of eukaryotic genomes. Genome Res 11:373–381

    Article  PubMed  CAS  Google Scholar 

  • Friedman R, Hughes AL (2003) The temporal distribution of gene duplication events in a set of highly conserved human gene families. Mol Biol Evol 20:154–161

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Zhang Z, Huang W (2005) Rapid evolution of expression and regulatory divergences after yeast gene duplication. Proc Natl Acad Sci USA 102:707–712

    Article  PubMed  CAS  Google Scholar 

  • He X, Zhang J (2005) Gene complexity and gene duplicability. Curr Biol 15:1016–1021

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B 256:119–124

    Article  CAS  Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York

    Google Scholar 

  • Hughes AL (2005) Gene duplication and the origin of novel proteins. Proc Natl Acad Sci USA 102:8791–8792

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2003) Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Res 13:794–799

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2004) Transposable element distribution in the yeast genome reflects a role in repeated genomic rearrangement events on an evolutionary time scale. Genetica 121:181–185

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2005) Expression patterns of duplicate genes in the developing root in Arabidopsis thaliana. J Mol Evol 60:247–256

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Ekollu V, Friedman R, Rose JR (2005) Gene family content-based phylogeny of prokaryotes: the effect of search criteria. Syst Biol 54:268–276

    Article  PubMed  Google Scholar 

  • Hughes MK, Hughes AL (1993) Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360–1369

    PubMed  CAS  Google Scholar 

  • Jensen RA (1976) Enzyme recruitment in the evolution of new function. Annu Rev Microbiol 30:409–425

    Article  PubMed  CAS  Google Scholar 

  • Jensen RA, Byng GS (1981) The partitioning of biochemical pathways with isozyme systems. Isozymes 5:143–174

    PubMed  CAS  Google Scholar 

  • Jordan IK, Marino-Ramirez L, Wolf YI, Koonin EV (2004) Conservation and coevolution in the scale-free human gene coexpression network. Mol Biol Evol 21:2058–2070

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Ohta T (1974) On some principles governing molecular evolution. Proc Natl Acad Sci USA 71:2848–2852

    Article  PubMed  CAS  Google Scholar 

  • Li WH, Yang J, Gu X (2005) Expression divergence between duplicate genes. Trends Genet 21:602–607

    Article  PubMed  Google Scholar 

  • Luscombe NM, Babu MM, Yu H, Snyder M, Teichman SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed  CAS  Google Scholar 

  • Meyer VE, Young RA (1998) RNA polymerase II holoenzymes and subcomplexes. J Biol Chem 273:27757–27760

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Noiva R, Lennarz WJ (1992) Protein disulfide isomerase: a multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem 267:3553–3556

    PubMed  CAS  Google Scholar 

  • Oakeshott JG, Horne I, Sutherland TD, Russell RJ (2003) The genomics of insecticide resistance. Genome Biol 4:202

    Article  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Ohno S (1973) Ancient linkage groups and frozen accidents. Nature 244:259–262

    Article  Google Scholar 

  • Orgel LE (1977) Gene-duplication and the origin of proteins with novel functions. J Theor Biol 67:773

    Article  PubMed  CAS  Google Scholar 

  • Seoighe C, Wolfe KH (1999) Updated map of duplicated regions in the yeast genome. Gene 238:253–261

    Article  PubMed  CAS  Google Scholar 

  • Shia W-J, Osada S, Florens L, Swanson SK, Washburn MP, Workman JL (2005) Characterization of the yeast trimeric-SAS acetyltransferase complex. J Biol Chem 280:11987–11994

    Article  PubMed  CAS  Google Scholar 

  • Sutton A, Shia J-W, Band D, Kaufman PD, Osada S, Workman JL, Sternglanz R (2003) Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 278:16887–16892

    Google Scholar 

  • Tachibana C, Stevens TH (1992) The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol Cell Biol 12:4601–4611

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2000) Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist–selectionist debate. Proc Natl Acad Sci USA 97:6579–6584

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    PubMed  CAS  Google Scholar 

  • Zhang Z, Gu J, Gu X (2004) How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution? Trends Genet 20:403–407

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant GM43940 from the National Institutes of Health to A.L.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin L. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, A.L., Friedman, R. Sharing of transcription factors after gene duplication in the yeast Saccharomyces cerevisiae . Genetica 129, 301–308 (2007). https://doi.org/10.1007/s10709-006-0011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0011-8

Keywords

Navigation