Skip to main content

Advertisement

Log in

An Overview of Electrokinetic Consolidation of Soils

  • State-of-the-Art Review
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Electrokinetic stabilization is one of the techniques that improve the geotechnical properties of the soils. It was pioneered by Casagrande in late 1940s and has not seen much development since then, especially in large-scale field applications. Some bench scale studies have been carried out during the past two decades and there have been some small scale field studies and limited field applications, mostly on soft soils. Due to lack of understanding of the physiochemical and electrochemical changes in the soil during electrokinetic stabilization, uncertain energy costs, loss of efficiency with time and the corrosion of electrodes, this method is usually considered as a last resort for large-scale practical applications. The objective of this paper is to highlight the critical parameters affecting electrokinetic consolidation, and to discuss their effects on the efficiency of the process. A better understanding of these critical parameters and their effects will enable geotechnical engineers to design the electrokinetic consolidation operation more effectively and make it an economically viable process for many situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdullah WS, Al-Abadi AM (2010) Cationic–electrokinetic improvement of an expansive soil. Appl Clay Sci 47(3–4):343–350. doi:10.1016/j.clay.2009.11.046

    Article  Google Scholar 

  • Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647. doi:10.1021/es00049a002

    Article  Google Scholar 

  • Acar Y, Alshawabkeh A (1996) Electrokinetic remediation. I. pilot-scale tests with Pb-spiked kaolinite. ASCE J Geotech Eng 122:173–185

    Article  Google Scholar 

  • Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40(2):117–137. doi:10.1016/0304-3894(94)00066-P

    Article  Google Scholar 

  • Adamson LG, Rieke Iii HH, Grey RR, Chilingar GV (1967) Electrochemical treatment of highly shrinking soils. Eng Geol 2(3):197–203. doi:10.1016/0013-7952(67)90019-1

    Article  Google Scholar 

  • Alshawabkeh A, Acar Y (1996) Electrokinetic remediation. II: theoretical model. J Geotech Eng 122(3):186–196. doi:10.1061/(ASCE)0733-9410(1996)122:3(186)

    Article  Google Scholar 

  • Asavadorndeja P, Glawe U (2005) Electrokinetic strengthening of soft clay using the anode depolarization method. Bull Eng Geol Environ 64(3):237–245. doi:10.1007/s10064-005-0276-7

    Article  Google Scholar 

  • Ballou E (1955) Electroosmotic flow in homoionic kaolinite. J Colloid Sci 10:450–460

    Article  Google Scholar 

  • Bergado DT, Sasanakul I, Horpibulsuk S (2003) Electro-osmotic consolidation of soft Bangkok clay using copper and carbon electrodes with PVD, vol 26. ETATS-UNIS: American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • Bjerrum L, Moum J, Eide O (1967) Application of electro-osmosis to a foundation problem in a Norwegian Quick Clay. Géotechnique 17(3):214–235

    Article  Google Scholar 

  • Burnotte F, Lefebvre G, Grondin G (2004a) A case record of electroosmotic consolidation of soft clay with improved soil-electrode contact. Can Geotech J 41(6):1038–1053

    Article  Google Scholar 

  • Burnotte F, Lefebvre G, Grondin G (2004b) A case record of electroosmotic consolidation of soft clay with improved soil–electrode contact. Can Geotech J 41(6):1038–1053. doi:10.1139/t04-045

    Article  Google Scholar 

  • Casagrande L (1948) Electro-osmosis in soils. Paper presented at the Géotechnique, London, England

  • Casagrande L (1949) Electro-osmosis in soils. Géotechnique 1:1959–1977

  • Casagrande L (1952) Electro-osmosis stabilization of soils. J Boston Soc Civil Eng 39(1):51–83

    Google Scholar 

  • Casagrande L (1983) Stabilization of soils by means of electro-osmosis. J Boston Soc Civil Eng ASCE 69(2):255–302

    Google Scholar 

  • Chappell BA, Burton PL (1975) Electra-osmosis applied to unstable embankment. J Geotech Eng Div ASCE 101(GT8):733–739

    Google Scholar 

  • Chen JL, Murdoch LC (1997) Field demonstration of insitu electroosmosis between horizontal electrodes insitu remediation of the geoenviroment. Paper presented at the proceedings ASCE annual convention, Minneapolis

  • Chen H, Mujumdar AS, Raghavan GSV (1996) Laboratory experiments on electroosmotic dewatering of vegetable sludge and mine tailings. Dry Technol 14(10):2435–2445

    Article  Google Scholar 

  • Chien SC, Ou CY, Wang YG (2009) Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil. Appl Clay Sci 44(3–4):218–224

    Article  Google Scholar 

  • Diamond S, Kinter EB (1965) Mechanisms of soil-lime stabilization. Highway Res Rec 92:83–102

    Google Scholar 

  • Ermakova EN, Kotik DS, Polyakov SV, Bösinger T, Sobchakov LA (2006) A power line as a tunable ULF-wave radiator: properties of artificial signal at distances of 200 to 1000 km. J Geophys Res. doi:10.1029/2005JA011420

    Google Scholar 

  • Esrig MI (1968) Pore pressures, consolidation and electro-kinetics. ASCE J Soil Mech Found 94(SM4):899–921

    Google Scholar 

  • Esrig MI, Henkel DJ (1968) Some aspects of soil mechanics in relation to vehicle mobility. Buffalo Inc.: Cornell Aeronautical Laboratory, New York

    Google Scholar 

  • Evans HE, Lewis RW (1970) Effective stress principle in saturated clay. J Soil Mech Div ASCE 96(SM2):671–683

    Google Scholar 

  • Fan X, Wang H, Luo Q, Ma J, Zhang X (2007) The use of 2D non-uniform electric field to enhance in situ bioremediation of 2,4-dichlorophenol-contaminated soil. J Hazard Mater 148(1–2):29–37. doi:10.1016/j.jhazmat.2007.01.144

    Article  Google Scholar 

  • Fetzer C (1967) Electro-osmotic stabilization of west branch dam. Trans Am Soc Civ Eng 133:540–563

    Google Scholar 

  • Fourie AB, Jones CJFP (2010) Improved estimates of power consumption during dewatering of mine tailings using electrokinetic geosynthetics (EKGs). Geotext Geomembr 28(2):181–190. doi:10.1016/j.geotexmem.2009.10.007

    Article  Google Scholar 

  • Fourie AB, Johns DG, Jones CJFP (2007) Dewatering of mine tailings using electrokinetic geosynthetics. Can Geotech J 44:2

    Article  Google Scholar 

  • Glendinning S, Jones CJFP, Pugh RC (2005) Reinforced soil using cohesive fill and electrokinetic geosynthetics (EKG). Int J Geomech 5(2):138–146

    Article  Google Scholar 

  • Glendinning S, Jones CJFP, Lamont-Black J, Hall J (2008) Treatment of lagooned sewage sludge in situ using electrokinetic geosynthetics. Geosynth Int 15(3):192–204. doi:10.1680/gein.2008.15.3.192

    Article  Google Scholar 

  • Gray DH, Mitchell JK (1967) Fundamental aspects of electro-osmosis in soils. J Soil Mech Found Div ASCE 93(6):209–236

    Google Scholar 

  • Hamir RB, Jones C, Clarke BG (2001) Electrically conductive geosynthetics for consolidation and reinforced soil. Geotext Geomembr 19(8):455–482. doi:10.1016/s0266-1144(01)00021-8

    Article  Google Scholar 

  • Helmholtz HLF (1879) Studies of electric boundary layers. Wied Ann 7:337–382

    Article  Google Scholar 

  • Hu LM, Wu WL, Wu H (2012) Numerical model of electroosmotic consolidation in clay. Geotechnique 62(6):537–541

    Article  Google Scholar 

  • Ivliev EA (2008) Electro-osmotic drainage and stabilization of soils. Soil Mech Found Eng 45(6):211–218. doi:10.1007/s11204-009-9031-6

    Article  Google Scholar 

  • Jayasekera S, Hall S (2007) Modification of the properties of salt affected soils using electrochemical treatments. Geotech Geol Eng 25(1):1–10. doi:10.1007/s10706-006-0001-8

    Article  Google Scholar 

  • Jayasekera S, Mewett J, Hall S (2004) Effects of electrokinetic treatments on the properties of a salt affected soil. Aust Geomech J 39(4):33–46

    Google Scholar 

  • Jeyakanthan V, Gnanendran CT, Lo SCR (2011) Laboratory assessment of electro-osmotic stabilization of soft clay. Can Geotech J 48(12):1788–1802. doi:10.1139/t11-073

    Article  Google Scholar 

  • Johnston IW, Butterfield R (1977) A laboratory investigation of soil consolidation by electro-osmosis. Aust Geomech J G7:21–32

    Google Scholar 

  • Jones C, Glendinning S, Huntley DT, Lamont-Black J (2006a) Soil consolidation and strengthening using electrokinetic geosynthetics—concepts and analysis. Millpress Science Publishers, Rotterdam

    Google Scholar 

  • Jones CJFP, Glendinning S, Huntley D, Lamont-Black J (2006b) Case history: In-situ dewatering of lagooned sewage sludge using Electrokinetic geosynthetics (EKG). In: Kuwanao J, Koseki J (eds) Eighth International Conference on Geosynthetics. Millpress, Rotterdam, pp 539–542

    Google Scholar 

  • Jones CJFP, Lamont-Black J, Glendinning S (2011) Electrokinetic geosynthetics in hydraulic applications. Geotext Geomembr 29(4):381–390. doi:10.1016/j.geotexmem.2010.11.011

    Article  Google Scholar 

  • Kalumba D, Glendinning S, Rogers C, Tyrer M, Boardman D (2009) Dewatering of tunneling slurry waste using electrokinetic geosynthetics. J Environ Eng 135(11):1227–1236. doi:10.1061/(ASCE)0733-9372(2009)135:11(1227)

    Article  Google Scholar 

  • Kamarudin B, Mohd RT, Khairul AK (2010) Electrokinetic treatment on a tropical residual soil. Paper presented at the proceedings of the ICE—ground improvement

  • Kaniraj S, Yee JHS (2011) Electro-Osmotic consolidation experiments on an organic soil. Geotech Geol Eng 29(4):505–518. doi:10.1007/s10706-011-9399-8

    Article  Google Scholar 

  • Kaniraj ASR, Huong HL, Yee JHS (2011a) Electro-Osmotic consolidation studies on peat and clayey silt using electric vertical drain. Geotech Geol Eng 29(3):277–295. doi:10.1007/s10706-010-9375-8

    Article  Google Scholar 

  • Kaniraj S, Huong HL, Yee JHS (2011b) Electro-Osmotic consolidation studies on peat and clayey silt using electric vertical drain. Geotech Geol Eng 29(3):277–295. doi:10.1007/s10706-010-9375-8

    Article  Google Scholar 

  • Karunaratne GP, Jong HK, Chew SH (2004) New electrically conductive geosynthetics for soft clay consolidation. Paper presented at the GeoAsia 2004, Seoul, Korea

  • Kim K-J, Kim D-H, Yoo J-C, Baek K (2011) Electrokinetic extraction of heavy metals from dredged marine sediment. Sep Purif Technol 79(2):164–169. doi:10.1016/j.seppur.2011.02.010

    Article  Google Scholar 

  • Laursen S, Jensen JB (1993) Electro-osmosis in filter cakes of activated sludge. Water Resour 27(5):777–783

    Google Scholar 

  • Lee G, Ro H, Lee S (2007) Effects of triethyl phosphate and nitrate on electro-kinetically enhanced biodegradation of diesel in low permeability soils. Environ Technol 28:853–860

    Article  Google Scholar 

  • Lefebvre G, Burnotte F (2002) Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes. Can Geotech J 39(2):399–408

    Article  Google Scholar 

  • Lewis RW, Humpheson C (1974) Numerical analysis of electro-osmotic flow in soils. ASCE J Soil Mech Found 11(3):51. doi:10.1016/0148-9062(74)91583-6

    Google Scholar 

  • Liaki C, Rogers CDF, Boardman DI (2010) Physico-chemical effects on clay due to electromigration using stainless steel electrodes. J Appl Electrochem 40(6):1225–1237. doi:10.1007/s10800-010-0096-8

    Article  Google Scholar 

  • Lo KY, Ho KS, Inculet II (1991a) Field test of electroosmotic strengthening of soft sensitive clay. Can Geotech J 28(1):74–83

    Article  Google Scholar 

  • Lo KY, Inculet II, Ho KS (1991b) Electroosmotic strengthing of soft sensitive clays. Can Geotech J 28(1):62–73

    Article  Google Scholar 

  • Loch JPG, Lima A, Kleingeld P (2010) Geochemical effects of electro-osmosis in clays. J Appl Electrochem 40(6):1249–1254. doi:10.1007/s10800-010-0098-6

    Article  Google Scholar 

  • Lockhart NC (1983) Electro-osmotic dewatering of clays: influence of voltage. Colloids Surf A 6(3):229–238

    Article  Google Scholar 

  • Lockhart NC (1992) Combined field dewatering—bridging the science-industry gap. Drying Technol 10(4):839–874. doi:10.1080/07373939208916485

    Article  Google Scholar 

  • Lockhart NC, Stickland RE (1984) Dewatering coal washery tailings ponds by electroosmosis. Powder Technol 40(1–3):215–221. doi:10.1016/0032-5910(84)85067-6

    Article  Google Scholar 

  • Lomize GM, Netushil AV (1958) Elektroosmoticheskoe vodoponizhenie. WorldCat, Moskva

    Google Scholar 

  • Long E, George W (1967) Turnagain slide stabilization, An- chorage, Alaska. J Soil Mech Found Div ASCE 93(4):611–627

    Google Scholar 

  • Luo Q, Wang H, Zhang X, Qian Y (2005) Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl Environ Microbiol 71(1):423–427. doi:10.1128/aem.71.1.423-427.2005

    Article  Google Scholar 

  • Micic S, Shang JQ, Lo KY, Lee YN, Lee SW (2001) Electrokinetic strengthening of a marine sediment using intermittent current. Can Geotech J 38(2):287–302. doi:10.1139/t00-098

    Article  Google Scholar 

  • Miller S, Murphy A, Veal C, Young M (1999) Electrodewatering of sewage sludge—pilot scale studies. American Filtration & Separations Society, Northport

    Google Scholar 

  • Mitchell JK (1991) Conduction uhenomena: from theoiy to geotecinical practice. Géotechnique 41(3):299–340

    Article  Google Scholar 

  • Mitchell JK (1993) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Mohamedelhassan E, Shang JQ (2001a) Analysis of electrokinetic sedimentation of dredged Welland River sediment. J Hazard Mater 85(1–2):91–109. doi:10.1016/S03043894(01)00223-0

    Article  Google Scholar 

  • Mohamedelhassan E, Shang JQ (2001b) Analysis of electrokinetic sedimentation of dredged Welland River sediment. J Hazard Mater 85(1–2):91–109. doi:10.1016/S0304-3894(01)00223-0

    Article  Google Scholar 

  • Muraoka AB, Linarèsj K, Varret F (2011). Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: a monte carlo study. Phys Rev B84. doi:10.1016/j.seppur.2011.02.032

  • Olsen HW (1972) Liquid Movement through kaolinite under hydraulic, electric, and osmotic gradients. Am Assoc Pet Geol Bull 56(10):2022–2028

    Google Scholar 

  • Ou CY, Chien SC, Chang HH (2009) Soil improvement using electroosmosis with the injection of chemical solutions: field tests. Can Geotech J 46(6):727–733. doi:10.1139/t09-012

    Article  Google Scholar 

  • Pamukcu S, Weeks A, Wittle JK (1997) Electrochemical extraction and stabilization of selected inorganic species in porous media. J Hazard Mater 55(1–3):305–318

    Article  Google Scholar 

  • Perrin J (1904) Mecanisme de l’e1ectrisation de contact et solutions colloYdales. J Chem Phys 2:601–651

    Google Scholar 

  • Pevzner ME (1978) Control of rock deformations in quarries [in Russian]. Paper presented at the Nedra, Moscow

    Google Scholar 

  • Pevzner ME, Valer’yanova LI, Belen’kii PG (1971) Electro-chemical stabilization of soils during rock excavation. Paper presented at the 8th all-union conference on soil stabilization and strengthening [in Russian], Leningrad

  • Pugh RS (2002) Some observations on the influence of recent climate change on the subsidence of shallow foundations. Proc Inst Civil Eng Geotech Eng 155(1):23–25

    Google Scholar 

  • Quincke G (1861) Ueber die fortfuhrung materieller theilchen durch strmende electricitat. Ann Phys 113:513–598

    Article  Google Scholar 

  • Reddy KR, Urbanek A, Khodadoust AP (2006) Electroosmotic dewatering of dredged sediments: bench-scale investigation. J Environ Manage 78(2):200–208. doi:10.1016/j.jenvman.2005.04.018

    Article  Google Scholar 

  • Reuss FF (1809) Memoires de la societe imperiale des naturalists de Moscow, vol 2, pp 327–337

  • Rhoades JD, Ingvalson RD (1971) Determining salinity in field soils with soil resistance measurement. Soil Sci Soc Am J 35:54–60

    Article  Google Scholar 

  • Rittirong A, Shang J, Mohamedelhassan E, Ismail M, Randolph M (2008) Effects of electrode configuration on electrokinetic stabilization for caisson anchors in calcareous sand. J Geotech Geoenviron Eng 134(3):352–365. doi:10.1061/(ASCE)1090-0241(2008)134:3(352)

    Article  Google Scholar 

  • Rozas F, Castellote M (2012) Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochim Acta 86:102–109. doi:10.1016/j.electacta.2012.03.068

    Article  Google Scholar 

  • Sah JG, Chen JY (1998) Study of the electrokinetic process on Cd and Pb spiked soils. J Hazard Mater 58(1–3):301–315. doi:10.1016/S0304-3894(97)00140-4

    Article  Google Scholar 

  • Schaad W (1958) Praktische Anwendung der Elektro-osmose im Gebiet des Grundbaues. Bautechnik 35:6–11

    Google Scholar 

  • Schaad W, Haefeli R (1947) Electrokinetic phenomena and their application in soil mechanics. Schweizerisehe Bauzeitung 65, 216–217, 223–226, 235–238

  • Segall BA, Bruell CJ (1992) Electroosmotic contaminant-removal processes. J Environ Eng Asce 118(1):84–100. doi:10.1061/(asce)0733-9372(1992)118:1(84)

    Article  Google Scholar 

  • Shang JQ (1997) Electrokinetic sedimentation: a theoretical and experimental study. Can Geotech J 34(2):305–314

    Article  Google Scholar 

  • Shang JQ (1998) Electokinetic dewatering of clay slurries as engineered soil covers. Can Geotech J 34(1):78–86. doi:10.1139/t96-083

    Article  Google Scholar 

  • Shang JQ, Dunlap WA (1996) Improvement of soft clays by high-voltage electrokinetics. J Geotech Eng ASCE 122(4):274–280

    Article  Google Scholar 

  • Shang JQ, Mohamedelhassan E, Ismail MA (2004) Electrochemical cementation of offshore calcareous soil. Can Geotech J 41(5):877–893

    Article  Google Scholar 

  • Smoluchowski M (1921) Elektrische endosmose und strömungsströme. Handbuch der Elektrizität und des Magnetismus 2:366–428

    Google Scholar 

  • Sprute RH, Kelsh DJ (1975) Electrokinetic densification of hydraulic backfill—a field test. Dept. of the Interior, Bureau of Mines, Pittsburgh

  • Sprute RH, Kelsh DJ (1980) Dewatering fine particle suspensions with direct current. Paper presented at the international symposium of fine particle processing, Las Vegas

    Google Scholar 

  • Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. Wiley, New York

    Google Scholar 

  • Veder C (1981) In: Hilbert R (ed) Landslides and their stabilization. Springer, New York

  • Wu W (2009) Theoretical model and numerical simulation of electro-osmotic consolidation on soft clay. Tsinghua University, Beijing

    Google Scholar 

  • Yan S, Singh AN, Fu S, Liao C, Wang S, Li Y, Hu L (2012) A soil fauna index for assessing soil quality. Soil Biol Biochem 47:158–165. doi:10.1016/j.soilbio.2011.11.014

    Article  Google Scholar 

  • Yang M, Choi B, Park H, Hong W, Lee S, Park T (2010) Development of a glucose biosensor using advanced electrode modified by nanohybrid composing chemically modified graphene and ionic liquid. Electroanalysis 22(1223–1228). doi:10.1365/s10337-010-1670-2

  • Yuan C, Weng C-H (2003) Sludge dewatering by electrokinetic technique: effect of processing time and potential gradient. Adv Environ Res 7(3):727–732. doi:10.1016/S1093-0191(02)00030-8

    Article  Google Scholar 

  • Yukawa H, Yoshida H, Kobayashi K, Hakoda M (1976) Fundamental study on electroosmotic dawatering of sludge at constant electric current. J Chem Eng Jpn 9:402–407

    Article  Google Scholar 

  • Yukselen-Aksoy Y, Reddy KR (2010) Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim Acta 86:164–169

    Article  Google Scholar 

  • Zhinkin GN, Kalganov VF (1980) Electro-chemical treatment of clayey soils in the beds of structures. Stroiizdat, Moscow

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Malekzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekzadeh, M., Lovisa, J. & Sivakugan, N. An Overview of Electrokinetic Consolidation of Soils. Geotech Geol Eng 34, 759–776 (2016). https://doi.org/10.1007/s10706-016-0002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-016-0002-1

Keywords

Navigation