Skip to main content

Advertisement

Log in

Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Nitrogen (N) is the most important yield-limiting factor in agricultural systems, however, N application can lead to emissions and environmental problems such as global warming (N2O) and groundwater contamination (NO3 ). This study analyses the N balance, nitrogen-use efficiency, and N loss potential of conventional farming systems (arable farming, improved arable farming, and agroforestry) and organic farming systems (mixed farming, arable farming, and agroforestry) based on long-term field experiments in southern Germany. The effects of the conversion of farm structure and N management are identified. The conventional farming systems in this study were high N-input and high N-output systems. The conventional arable farming system had the lowest nitrogen-use efficiency and the highest N surplus. An optimised N management and the use of high-yielding crop varieties improved its nitrogen-use efficiency. The establishment of conventional agroforestry resulted in the reduction of N input, N output and N surplus, while maintaining high yields. The organic mixed farming system is characterised by a relatively high N input and N output, the accumulation of soil organic nitrogen, the highest nitrogen-use efficiency, and the lowest N surplus of all analysed systems. These good results can be attributed to the intensive farm N cycle between soil–plant–animal. The shift from organic mixed farming to organic arable farming system extensified the N cycle, reduced N input, crop yield and N output. The change from organic arable farming to organic agroforestry reduced the N input, increased the biomass yield, and remained the N surplus within an optimal range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bambrick AD, Whalen JK, Bradley RL, Cogliastro A, Gordon AM, Olivier A, Thevathasan NV (2010) Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agroforest Syst 79:343–353

    Article  Google Scholar 

  • Boring LR, Swank WT (1984) Symbiotic nitrogen fixation in regenerating black locust (Robinia pseudoacacia L.) stands. Forest Sci 30:528–537

    Google Scholar 

  • Bormann BT, Bormann FH, Bowden WB, Pierce RS, Hamburg SP, Wang D, Snyder MC, Li CY, Ingersoll RC (1993) Rapid N2 fixation in pines, alder, and locust: evidence from the sandbox ecosystems study. Ecology 74:583–598

    Article  Google Scholar 

  • Brock C, Hoyer U, Leithold G, Hülsbergen K-J (2012a) The humus balance model (HU-MOD): a simple tool for the assessment of management change impact on soil organic matter levels in arable soils. Nutr Cycl Agroecosyst 92:239–254

    Article  CAS  Google Scholar 

  • Brock C, Oberholzer H-R, Schwarz J, Fließbach A, Hülsbergen K-J, Koch W, Pallutt B, Reinicke F, Leithold G (2012b) Soil organic matter balances in organic versus conventional farming—modelling in field experiments and regional upscaling for cropland in Germany. Org Agric 2:185–195

    Article  Google Scholar 

  • Bryzinski T, Hülsbergen K-J (2015) Energiebilanzen und Erträge ökologischer und konventioneller Anbausysteme: erste Analyseergebnisse eines Dauerfeldversuchs in Süddeutschland. In: Beiträge zur 13. Wissenschaftstagung Ökologischer Landbau. Verlag Dr. Köster, Berlin, pp 248–251

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Christen O, Hövelmann L, Hülsbergen K-J, Packeiser M, Rimpau J, Wagner B (2009) Nachhaltige landwirtschaftliche Produktion in der Wertschöpfungskette Lebensmittel. Erich Schmidt Verlag, Berlin

    Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    Article  CAS  Google Scholar 

  • Danso S, Bowen G, Sanginga N (1992) Biological nitrogen fixation in trees in agro-ecosystems. Plant Soil 141:177–196

    Article  CAS  Google Scholar 

  • Danso S, Zapata F, Awonaike K (1995) Measurement of biological N2 fixation in field-grown Robinia pseudoacacia L. Soil Biol Biochem 27:415–419

    Article  CAS  Google Scholar 

  • Dawson M (2007) Short rotation coppice willow best practice guidelines. Renew Project. http://www.spiritsolar.co.uk/wp-content/uploads/2013/05/short-rotation-coppice-willow.pdf. Accessed 23 Sept 2015

  • Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22

    Article  Google Scholar 

  • Dittert K (1992) Die stickstoffixierende Schwarzerle-Frankia-Symbiose in einem Erlenbruchwald der Bornhöveder Seenkette. EcoSys Suppl 5:1–98

    Google Scholar 

  • Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agroforest Syst 59:121–129

    Article  Google Scholar 

  • European Environmental Bureau, ClientEarth, AirClim (2013) Ammonia control options for better air quality. http://www.eeb.org/?LinkServID=E1B5ACC1-5056-B741-DB92489757EB9AC0&showMeta=0&aa. Accessed 23 Sept 2015

  • Gerber PJ, Uwizeye A, Schulte RPO, Opio CI, de Boer IJM (2014) Nutrient use efficiency: a valuable approach to benchmark the sustainability of nutrient use in global livestock production. Curr Opin Environ Sustain 9–10:122–130

    Article  Google Scholar 

  • Godinot O, Carof M, Vertès F, Leterme P (2014) SyNE: an improved indicator to assess nitrogen efficiency of farming systems. Agric Syst 127:41–52

    Article  Google Scholar 

  • Høgh-Jensen H, Loges R, Jørgensen FV, Vinther FP, Jensen ES (2004) An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Agric Syst 82:181–194

    Article  Google Scholar 

  • Hülsbergen K-J (2003) Entwicklung und Anwendung eines Bilanzierungsmodells zur Bewertung der Nachhaltigkeit landwirtschaftlicher Systeme. Shaker, Aachen

    Google Scholar 

  • Hülsbergen K-J, Feil B, Biermann S, Rathke G-W, Kalk W-D, Diepenbrock W (2001) A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agric Ecosyst Environ 86:303–321

    Article  Google Scholar 

  • Hülsbergen K-J, Küstermann B, Engelmann K (2012) Indikatoren zur Beurteilung der N-Effizienz in ökologischen und konventionellen Betriebssystemen. In: N-Effizienz im Spannungsfeld “Ertrags- und Qualitätssicherung – Nachhaltigkeit – Umweltauflagen”. Wissenschaftliche Tagung am 1./2. März 2012. LEUCOREA, Lutherstadt Wittenberg. Martin-Luther-Universität Halle-Wittenberg, Halle, pp 25-30

  • Hurd T, Raynal D, Schwintzer C (2001) Symbiotic N2 fixation of Alnus incana ssp. rugosa in shrub wetlands of the Adirondack Mountains, New York, USA. Oecologia 126:94–103

    Article  Google Scholar 

  • Ilany T, Ashton MS, Montagnini F, Martinez C (2010) Using agroforestry to improve soil fertility: effects of intercropping on Ilex paraguariensis (yerba mate) plantations with Araucaria angustifolia. Agroforest Syst 80:399–409

    Article  Google Scholar 

  • Isaac ME, Ulzen-Appiah F, Timmer VR, Quashie-Sam SJ (2007) Early growth and nutritional response to resource competition in cocoa-shade intercropped systems. Plant Soil 298:243–254

    Article  CAS  Google Scholar 

  • Johann-Heinrich von Thünen-Institut–Institut für Forstgenetik (2012) Poplars and Willows in Germany: report of the National Poplar Commission. Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Bonn

    Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agroforest Syst 76:1–10

    Article  Google Scholar 

  • Ju XT, Kou CL, Zhang FS, Christie P (2006) Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Pollut 143:117–125

    Article  CAS  PubMed  Google Scholar 

  • Jug A, Makeschin F, Rehfuess K, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. Forest Ecol Manag 121:85–99

    Article  Google Scholar 

  • Keating BA, Carberry PS, Bindraban PS, Asseng S, Meinke H, Dixon J (2010) Eco-efficient agriculture: concepts, challenges, and opportunities. Crop Sci 50:109–119

    Article  Google Scholar 

  • Körschens M (1992) Simulationsmodelle für den Umsatz und die Reproduktion der organischen Substanz im Boden. Berichte über Landwirtschaft 206:140–154

    Google Scholar 

  • Küstermann B, Kainz M, Hülsbergen K-J (2008) Modeling carbon cycles and estimation of greenhouse gas emissions from organic and conventional farming systems. Renew Agric Food Syst 23:38–52

    Article  Google Scholar 

  • Küstermann B, Christen O, Hülsbergen K-J (2010) Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management. Agric Ecosyst Environ 135:70–80

    Article  Google Scholar 

  • Lee YY, Son Y (2005) Diurnal and seasonal patterns of nitrogen fixation in an Alnus hirsuta plantation of central Korea. J Plant Biol 48:332–337

    Article  CAS  Google Scholar 

  • Leip A, Britz W, Weiss F, de Vries W (2011) Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environ Pollut 159:3243–3253

    Article  CAS  PubMed  Google Scholar 

  • Leithold G, Hülsbergen K-J, Brock C (2015) Organic matter returns to soils must be higher under organic compared to conventional farming. J Plant Nutr Soil Sc 178:4–12

    Article  CAS  Google Scholar 

  • Li X, Hu C, Delgado JA, Zhang Y, Ouyang Z (2007) Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agric Water Manage 89:137–147

    Article  Google Scholar 

  • Lin HC, Huber JA, Gerl G, Hülsbergen K-J Effects of changing farm management and farm structure on the energy balance and energy-use efficiency: a case study in organic and conventional farming systems in Southern Germany. Eur J Agron (submitted)

  • Millar N, Robertson GP, Grace PR, Gehl RJ, Hoben JP (2010) Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture. Mitig Adapt Strateg Glob Change 15:185–204

    Article  Google Scholar 

  • Musshoff O (2012) Growing short rotation coppice on agricultural land in Germany: a real options approach. Biomass Bioenerg 41:73–85

    Article  Google Scholar 

  • Nerlich K, Graeff-Hönninger S, Claupein W (2013) Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agroforest Syst 87:475–492

    Article  Google Scholar 

  • Noh NJ, Son Y, Koo JW, Seo KW, Kim RH, Lee YY, Yoo KS (2009) Comparison of nitrogen fixation for north- and south-facing Robinia pseudoacacia stands in central Korea. J Plant Biol 53:61–69

    Article  Google Scholar 

  • Nygren P, Fernández MP, Harmand J-M, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosys 94:123–160

    Article  Google Scholar 

  • Oenema O, Tamminga S (2005) Nitrogen in global animal production and management options for improving nitrogen use efficiency. Sci China Ser C 48:871–887

    CAS  Google Scholar 

  • Patra AK (2013) Tree–crop interaction in agroforestry. Sci Horiz 4:12–17

    Google Scholar 

  • Petzold R, Schubert B, Feger K-H (2010) Biomasseproduktion, Nährstoffallokation und bodenökologische Veränderungen einer Pappel-Kurzumtriebsplantage in Sachsen (Deutschland). Die Bodenkultur 61:23–35

    CAS  Google Scholar 

  • Reynolds PE, Simpson JA, Thevathasan NV, Gordon AM (2007) Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol Eng 29:362–371

    Article  Google Scholar 

  • Rosenstock T, Tully K, Arias-Navarro C, Neufeldt H, Butterbach-Bahl K, Verchot L (2014) Agroforestry with N2-fixing trees: sustainable development’s friend or foe? Curr Opin Environ Sustain 6:15–21

    Article  Google Scholar 

  • Ryschawy J, Choisis N, Choisis J, Joannon A, Gibon A (2012) Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal 6:1722–1730

    Article  CAS  PubMed  Google Scholar 

  • Sanborn P, Preston C, Brockley R (2002) N2-fixation by Sitka alder in a young lodgepole pine stand in central interior British Columbia, Canada. Forest Ecol Manag 167:223–231

    Article  Google Scholar 

  • Schmid H, Braun M, Hülsbergen K-J (2013) Treibhausgasbilanzen und ökologische Nachhaltigkeit der Pflanzenproduktion – Ergebnisse aus dem Netzwerk der Pilotbetriebe. In: Hülsbergen K-J, Rahmann G (eds) Klimawirkungen und Nachhaltigkeit ökologischer und konventioneller Betriebssysteme: Untersuchungen in einem Netzwerk von Pilotbetrieben, Thünen Report, No. 8. Johann Heinrich von Thünen-Institut, Braunschweig, p 259–293

  • Schröder P, Huber B, Olazábal U, Kämmerer A, Munch J (2002) Land use and sustainability: FAM research network on agroecosystems. Geoderma 105:155–166

    Article  Google Scholar 

  • Schröder J, Aarts H, Ten Berge H, Van Keulen H, Neeteson J (2003) An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. Eur J Agron 20:33–44

    Article  Google Scholar 

  • Seidl F, Mastel K, Aust C, Kannenwischer N, Dieterich M (2014) Kurzumtriebsplantagen (KUP) und Miscanthus in Baden-Württemberg–Ergebnisse aus dem Forschungsprojekt„ Biomasse aus Kurzumtrieb” 28.01.2008–31.12.2013. Landwirtschaftliches Technologiezentrum Augustenberg, Karlsruhe

  • Sevel L, Nord-Larsen T, Ingerslev M, Jørgensen U, Raulund-Rasmussen K (2014) Fertilization of SRC willow, I: biomass production response. Bioenergy Res 7:319–328

    Article  CAS  Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266

    Article  CAS  Google Scholar 

  • Son Y, Lee YY, Lee CY, Yi MJ (2007) Nitrogen fixation, soil nitrogen availability, and biomass in pure and mixed plantations of alder and pine in central Korea. J Plant Nutr 30:1841–1853

    Article  CAS  Google Scholar 

  • Spiertz J (2010) Nitrogen, sustainable agriculture and food security. A review. Agron Sustain Dev 30:43–55

    Article  CAS  Google Scholar 

  • Stewart W, Dibb D, Johnston A, Smyth T (2005) The contribution of commercial fertilizer nutrients to food production. Agron J 97:1–6

    Article  Google Scholar 

  • Sutton MA, Howard CM, Erisman JW, Billen G, Bleeke A, Grennfelt P, van Grinsven H, Grizzetti B (2011a) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011b) Too much of a good thing. Nature 472:159–161

    Article  CAS  PubMed  Google Scholar 

  • Taube F, Balmann A, Bauhus J, Birner R, Bokelmann W, Christen O, Gauly M, Grethe H, HolmMüller K, Horst W, Knierim U, Latacz-Lohmann U, Nieberg H, Qaim M, Spiller A, Täuber S, Weingarten P, Wiesler F (2013) Novellierung der Düngeverordnung: Nährstoffüberschüsse wirksam begrenzen. Berichte über Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft 219:1–12

    Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Torstensson G, Aronsson H, Bergström L (2006) Nutrient use efficiencies and leaching of organic and conventional cropping systems in Sweden. Agron J 98:603–615

    Article  CAS  Google Scholar 

  • Uliassi DD, Ruess RW (2002) Limitations to symbiotic nitrogen fixation in primary succession on the Tanana River floodplain. Ecology 83:88–103

    Article  Google Scholar 

  • Umweltbundesamt (2014) Nährstoffeinträge aus der Landwirtschaft und Stickstoffüberschuss. http://www.umweltbundesamt.de/daten/land-forstwirtschaft/landwirtschaft/naehrstoffeintraege-aus-der-landwirtschaft. Accessed 07 July 2015

  • Uri V, Lõhmus K, Mander Ü, Ostonen I, Aosaar J, Maddison M, Helmisaari H-S, Augustin J (2011) Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest on abandoned agricultural land. Ecol Eng 37:920–930

    Article  Google Scholar 

  • Uri V, Aosaar J, Varik M, Becker H, Ligi K, Padari A, Kanal A, Lõhmus K (2014) The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana (L.) Moench) chronosequence stands in Estonia. Forest Ecol Manag 327:106–117

    Article  Google Scholar 

  • van Keulen H, Schiere H (2004) Crop-livestock systems: old wine in new bottles. In: New directions for a diverse planet. Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 September–1 October

  • Veste M, Böhm C, Quinkenstein A, Freese D (2013) Biologische Stickstoff-Fixierung der Robinie. AFZ-Der Wald 2:40–42

    Google Scholar 

  • Vockinger F (2013) Analyse der Flächenentwicklung, Anbaustrukturen und Fruchtfolgen ökologisch bewirtschafteter Ackerflächen Bayerns auf der Basis agrarstruktureller Daten. Bachelor Thesis, Technische Universität München

  • Wetterdienst D (2012) Klimadaten für Messstationen in Deutschland - Mittelwerte 30-jähriger Perioden (1981–2010). http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop. Accessed 12 Oct 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Chun Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HC., Huber, J.A., Gerl, G. et al. Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems. Nutr Cycl Agroecosyst 105, 1–23 (2016). https://doi.org/10.1007/s10705-016-9770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-016-9770-5

Keywords

Navigation