Skip to main content

Advertisement

Log in

The Rengen Grassland Experiment: soil contamination by trace elements after 65 years of Ca, N, P and K fertiliser application

  • Research Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The Rengen Grassland Experiment (RGE) was established in the Eifel Mts. (Germany) on a low productive Nardetum in 1941. Since then, the following fertiliser treatments have been applied along with a two cut system: unfertilised control, Ca, CaN, CaNP, CaNP–KCl and CaNP–K2SO4 with basic slag (syn. Thomas phosphate) as the only P fertiliser. The effect of long-term fertilisation on plant-available (extracted with 0.01 mol l−1 CaCl2), easily-mobilisable (extracted with 0.05 mol l−1 EDTA), potentially-mobilisable (extracted with 2 mol l−1 HNO3) and total concentrations of trace elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the top 0–10 and 10–20 cm of soil were investigated in 2006. According to redundancy analysis (RDA), the effect of treatment on the concentrations of risk elements was significant and explained 82.3 and 90.6% of the variability in the data in the 0–10 and 10–20 cm soil layers, respectively. Basic slag supplied the soil with considerable amounts of As, Cr, Cu, Fe, Mn and Zn. Following 65 years of fertiliser application the concentrations of risk elements in the soil profile had increased substantially, especially with basic slag. However, threshold limits for total trace element concentration in soil permitted by Czech national legislation were exceeded only in the case of As. The increase in plant-available As concentrations was most critical as it increased the potential uptake of As by plants in plots fertilised with P. Although P treatments received more than 300 g of Cr ha−1 annually, no effect on plant-available Cr soil content was detected. This contrasted with the accumulation of total Cr in the 0–10 and 10–20 cm soil layers. Furthermore, plant availability of Cd, Fe, Mn and Zn was affected by soil pH and generally decreased with the application of quick lime. Plant availability of these elements was not correlated with amounts supplied by fertilisers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anonymous (2001) Public notice No. 382/2001 about the application of sewage sludge into the agricultural soils. Czech Ministry of the Environment, Prague

    Google Scholar 

  • Borůvka L, HuanWei C, Kozák J, Krištoufková S (1996) Heavy contamination of soil with cadmium, lead and zinc in the alluvium of the Litavka river. Rost Vyr 42:543–550

    Google Scholar 

  • Castaldi P, Santona L, Melis P (2005) Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere 60:365–371. doi:10.1016/j.chemosphere.2004.11.098

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Chang AC, Wu L (2007) Assessing long-term environmental risks of trace elements in phosphate fertilizers. Ecotoxicol Environ Saf 67:48–58. doi:10.1016/j.ecoenv.2006.12.013

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury AK, McLaren RG, Cameron KC, Swift RS (1997) Fractionation of zinc in some New Zealand soils. Commun Soil Sci Plant Anal 28:301–312

    Article  CAS  Google Scholar 

  • Clemente R, Escolar A, Bernal MP (2006) Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresour Technol 97:1894–1901. doi:10.1016/j.biortech.2005.08.018

    Article  PubMed  CAS  Google Scholar 

  • Francesconi KA, Kuehnelt D (2004) Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst (Lond) 129:373–395. doi:10.1039/b401321m

    Article  CAS  Google Scholar 

  • Franklin RE, Duis L, Brown R, Kemp T (2005) Trace element content of selected fertilizers and micronutrient source materials. Commun Soil Sci Plant Anal 36:1591–1609. doi:10.1081/CSS-200059091

    Article  CAS  Google Scholar 

  • Gavi F, Basta T, Raun WR (1997) Wheat grain cadmium as affected by long-term fertilization and soil acidity. J Environ Qual 26:265–271

    CAS  Google Scholar 

  • Gray CW, McLaren RG, Roberts AHC, Condron LM (1999) The effect of long-term phosphatic fertiliser applications on the amounts and forms of cadmium in soils under pasture in New Zealand. Nutr Cycl Agroecosyst 54:267–277. doi:10.1023/A:1009883010490

    Article  CAS  Google Scholar 

  • Greger M, Malm T, Kautsky L (2007) Heavy metal transfer from composted macroalgae to crops. Eur J Agron 26:257–265. doi:10.1016/j.eja.2006.10.003

    Article  CAS  Google Scholar 

  • Guo GL, Zhou QX (2006) Evaluation of heavy metal contamination in Phaeozem of northeast China. Environ Geochem Health 28:331–340. doi:10.1007/s10653-005-9002-4

    Article  PubMed  CAS  Google Scholar 

  • He QB, Singh BR (1993) Crop uptake of cadmium from phosphorus fertilizers: II. Relationship with extractable soil cadmium. Water Air Soil Pollut 74:267–280

    Google Scholar 

  • Hejcman M, Klaudisová M, Schellberg J, Honsová D (2007) The Rengen Grassland Experiment: plant species composition after 64 years of fertilizer application. Agric Ecosyst Environ 122:259–266. doi:10.1016/j.agee.2006.12.036

    Article  Google Scholar 

  • Hickey MG, Kittrick JA (1984) Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high-levels of heavy-metals. J Environ Qual 13:372–376

    Article  CAS  Google Scholar 

  • Honsová D, Hejcman M, Klaudisová M, Pavlů V, Kocourková D, Hakl J (2007) Species composition of an alluvial meadow after 40 years of applying nitrogen, phosphorus and potassium fertilizer. Preslia 79:245–258

    Google Scholar 

  • Huang B, Kuo S, Bembenek R (2005) Availability to lettuce of arsenic and lead from trace element fertilizers in soil. Water Air Soil Pollut 164:223–239. doi:10.1007/s11270-005-3023-6

    Article  CAS  Google Scholar 

  • Kashem MA, Singh BR, Kawai S (2007) Mobility and distribution of cadmium, nickel and zinc in contamined soil profiles from Bangladesh. Nutr Cycl Agroecosyst 77:187–198. doi:10.1007/s10705-006-9056-4

    Article  CAS  Google Scholar 

  • Kucharski R, Sas-Novosielska A, Małkowski E, Japenga J, Kuperberg JM, Pogrzeba M et al (2005) The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil 273:291–305. doi:10.1007/s11104-004-8068-6

    Article  CAS  Google Scholar 

  • Lavado RS, Rodríguez M, Alvarez R, Taboada MA, Zubillaga MS (2007) Transfer of potentially toxic elements from biosolid-treated soils to maize and wheat crops. Agric Ecosyst Environ 118:312–318. doi:10.1016/j.agee.2006.06.001

    Article  CAS  Google Scholar 

  • Lee TM, Lai HY, Chen ZS (2004) Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere 57:1459–1471. doi:10.1016/j.chemosphere.2004.08.094

    Article  PubMed  CAS  Google Scholar 

  • Lehoczky E, Debreczeni K, Szalai T (2005) Available micronutrient contents of soils in long-term fertilization experiments in Hungary. Commun Soil Sci Plant Anal 36:423–430. doi:10.1081/CSS-200043130

    Article  CAS  Google Scholar 

  • Liu J, Duan CQ, Zhu ZN, Zhang XH, Wang CX (2007) Effect of chemical fertilizers on the fractionation of Cu, Cr and Ni in contaminated soil. Environ Geol 52:1601–1606. doi:10.1007/s00254-006-0604-7

    Article  CAS  Google Scholar 

  • Matsi T, Maslaris N, Barbayiannis N (2005) Micronutrient levels in sugar beet in soils of Greece. J Plant Nutr 28:2093–2099. doi:10.1080/01904160500320913

    Article  CAS  Google Scholar 

  • McGeehan SL, Naylor DV (1994) Sorption and redox transformation of arsenite and arsenate in two flooded soils. Soil Sci Soc Am J 58:337–342

    CAS  Google Scholar 

  • Mench MJ (1998) Cadmium availability to plants in relation to major long-term changes in agronomy systems. Agric Ecosyst Environ 67:175–187. doi:10.1016/S0167-8809(97)00117-5

    Article  CAS  Google Scholar 

  • Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145:121–130. doi:10.1016/j.envpol.2006.03.021

    Article  PubMed  CAS  Google Scholar 

  • Moral R, Gilkes RJ, Moreno-Caselles J (2002) A comparison of extractants for heavy metals in contaminated soils from Spain. Commun Soil Sci Plant Anal 33:2781–2791. doi:10.1081/CSS-120014480

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fert Res 43:55–61. doi:10.1007/BF00747683

    Article  Google Scholar 

  • Navas A, Lindhorfer H (2003) Geochemical speciation of heavy metals in semiarid soils of the central Ebro Valley (Spain). Environ Int 29:61–68. doi:10.1016/S0160-4120(02)00146-0

    Article  PubMed  CAS  Google Scholar 

  • Németh T, Magyar M, Csathó P, Osztoics E, Baczó G, Holló S et al (2002) Long-term field evaluation of phosphate rock and superphosphate use strategies in acid soils of Hungary: two comperative field trials. Nutr Cycl Agroecosyst 63:81–89. doi:10.1023/A:1020529001629

    Article  Google Scholar 

  • Novozamsky J, Lexmond TM, Houba VJG (1993) A single extraction procedure of soil for evaluation of uptake of some heavy metals in plants. Int J Environ Anal Chem 51:47–58. doi:10.1080/03067319308027610

    Article  CAS  Google Scholar 

  • Qafoku NP, Kukier U, Sumner ME, Miller WP, Radcliffe DE (1999) Arsenate displacement from fly ash in amended soils. Water Air Soil Pollut 114:185–199. doi:10.1023/A:1005053005922

    Article  CAS  Google Scholar 

  • Quevauviller P, Ure A, Muntau H, Griepink B (1993) Improvement of analytical measurements within the BCR—program—Single and sequential extraction procedures applied to soil and sediment analysis. Int J Environ Anal Chem 51:129–134. doi:10.1080/03067319308027618

    Article  CAS  Google Scholar 

  • Salviano AM, Pereira G, Araújo CW, Oliveira M (2006) Bioavailability of cadmium and lead in a soil amended with phosphorus fertilisers. Sci Agric (Paracicaba, Braz) 63:328–332

    Google Scholar 

  • Schellberg J, Möseler BM, Kühbauch W, Rademacher IF (1999) Long-term effects of fertilizer on soil nutrient content, yield, forage quality and floristic composition of a hay meadow in the Eifel Mountains, Germany. Grass Forage Sci 54:195–207. doi:10.1046/j.1365-2494.1999.00166.x

    Article  CAS  Google Scholar 

  • Sinaj S, Frossard E, Fardeau JC, Lhote F, Morel JL (1994) Direct observation of the alteration of Thomas slags after incorporation in a cultivated acid soil. Surface Geosci C R Acad Paris, t. 319, serie II:1207–1214

  • Sisr L, Mihaljevič M, Ettler V, Strnad L, Šebek O (2007) Effect of application of phosphate and organic manure-based fertilizers on arsenic transformation in soil columns. Environ Monit Assess 135:465–473. doi:10.1007/s10661-007-9666-6

    Article  PubMed  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (2002) Chemistry of arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption. J Environ Qual 31:557–563

    PubMed  CAS  Google Scholar 

  • StatSoft (1995) Statistica for Windows. StatSoft, Tulsa

    Google Scholar 

  • Sucharová J, Suchara I (2004) Current multi–element distribution in forest epigeic moss in the Czech Republic–a survey of the Czech national biomonitoring programme 2000. Chemosphere 57:1389–1398. doi:10.1016/j.chemosphere.2004.08.016

    Article  PubMed  CAS  Google Scholar 

  • Száková J, Tlustoš P, Balík J, Pavlíková D, Vaněk V (1999) The sequential analytical procedure as a tool for evaluation of As, Cd and Zn mobility in soil. Fresenius J Anal Chem 363:594–595. doi:10.1007/s002160051255

    Article  Google Scholar 

  • Száková J, Tlustoš P, Balík J, Pavlíková D, Balíková M (2000) Efficiency of extractants to release As, Cd, and Zn from main soil compartments. Analusis 28:808–812. doi:10.1051/analusis:2000147

    Article  Google Scholar 

  • Száková J, Tlustoš P, Pavlíková D, Hanč A, Batysta M (2007) Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions. Chem Pap 61:276–281. doi:10.2478/s11696-007-0033-4

    Article  CAS  Google Scholar 

  • Tao Y, Zhang S, Jian W, Yuan C, Shan XQ (2006) Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat. Chemosphere 65:1281–1287. doi:10.1016/j.chemosphere.2006.04.039

    Article  PubMed  CAS  Google Scholar 

  • Tassi E, Pedron F, Barbafieri M, Petruzzelli G (2004) Phosphate—assisted phytoextraction in As—contaminated soil. Eng Life Sci 4:341–346. doi:10.1002/elsc.200420037

    Article  CAS  Google Scholar 

  • Taylor MD, Percival HJ (2001) Cadmium in soil solutions from a transect of soils away from a fertiliser bin. Environ Pollut 113:35–40. doi:10.1016/S0269-7491(00)00170-6

    Article  PubMed  CAS  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York

    Google Scholar 

  • Tlustoš P, Száková J, Stárková A, Pavlíková D (2005) A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil. Cent Eur J Chem 3:830–851. doi:10.2478/BF02475207

    Article  Google Scholar 

  • Tlustoš P, Száková J, Kořínek K, Pavlíková D, Hanč A, Balík J (2006) The effect of liming on cadmium, lead, and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ 52:16–24

    Google Scholar 

  • Wang SP, Wang YF, Hu ZY, Chen ZZ, Fleckenstein J, Schnug E (2003) Status of iron, manganese, copper, and zinc of soils and plants and their requirement for ruminants in Inner Mongolia steppes of China. Commun Soil Sci Plant Anal 34:655–670. doi:10.1081/CSS-120018966

    Article  CAS  Google Scholar 

  • Watmough SA, Eimers MC, Dillon PJ (2007) Manganese cycling in central Ontario forests: response to soil acidification. Appl Geochem 22:1241–1247. doi:10.1016/j.apgeochem.2007.03.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical support of all staff members at the Rengen Experimental Station throughout the existence of the RGE. Special thanks for managing the experiment and soil sampling go to Dieter Hoffman-Gaber and Manfred Schwickerath. The authors thank Věra Semelová for her assistance during laboratory work and anonymous reviewers for useful comments on the manuscript. Data collection and finalisation of the paper was supported by Czech projects MA 0002700601, GAČR 521/08/1131, GAČR 205/06/0298 and MSM 6046070901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schellberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejcman, M., Szaková, J., Schellberg, J. et al. The Rengen Grassland Experiment: soil contamination by trace elements after 65 years of Ca, N, P and K fertiliser application. Nutr Cycl Agroecosyst 83, 39–50 (2009). https://doi.org/10.1007/s10705-008-9197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-008-9197-8

Keywords

Navigation