Skip to main content
Log in

An upper bound of failure in viscoelastic materials subjected to multiaxial stress states

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

The failure behavior of a polyrethane rubber is examined under uniaxial, equibiaxial and equitriaxial tensile stresses. The maximal strains in uniaxial and equibiaxial tension are found to be nearly the same. Using the concept of maximal polymer chain extensibility, it is deduced that polymer chain motion is less dependent on the stress state than is commonly assumed. Failure under equitriaxial tension produces gross failure strains much less than those observed for uniaxial and equibiaxial tension. It is concluded that failure starts from defects. For spherical defects, the consequences of a maximum strain are examined. It is found through arguments that smaller cavites are more detrimental to material integrity than larger ones and that the gross equitriaxial strain at Failure is sensitive to the viscoelastic material properties only if the maximal uniaxial extension is large for typical ratios of void volume to total volume.

Résumé

Le comportement à la rupture d' un polymére de la classe des polyuréthanes est examiné sous états de tensions uniaxées, équibiaxées et équitriaxées. On a constaté que les déformations maximales en traction uniaxiale et en traction équibiaxiale étaient sensiblement égales. En recourant au concept de l'extensibilité maximale des chaines des polymères, on déduit de cette constatation que le mouvement de la chaine d'un polymère dépend moins de l'état de tension qu'on ne le suppose généralement.

Per contre,la rupture sous traction equitriaxiale s' accompagne de déformations finales beaucoup moins importantes que dons les cas d'uniaxialité et d'équibiaxialité. On en conclut que la rupture sous traction unitriaxiale prend naissance à partir de défauts. On a examiné les effets de défauts sphériques sous déformation maximale, et trouvé, par des arguments simples, que l'intégrité du matériel était plus affectée par la présence de cavités petites que de cavité plus importantes. Par ailleurs, la déformation globale à rupture sous traction équitriaxiale ne dépend des propriétés viscoélastiques du matériel que dans la mesure où l'allongement maximum uniaxial atteint une valeur importante, et ce pour des rapports typiques du volume des cavités au volume total de matière.

Zusammenfassung

Das Bruchverhalten eines Polyurethan Polymers ist in ein-, zwei- und drei-axialen Spannungsfeldern untersucht. Die maximalen Dehnungen unter ein-und zwei-achsiger Beanspruchung sind nahezu gleich. Auf Grund maximaler Polymer Kettenextensibilität kann man daher schliessen, dass die Polymer-Kettenbewegung weniger von der Beanspruchung abhängt, als 'allgemein angenommen wird. Bruch unter hydrostatischem Zug erfolgt bei Dehnungen, die viel kleiner sind als beim ein- oder zwei-achsigen Zug. Man folgert, dass der Bruch von Defekten ausgeht. Für kugelförmige Hohldefekte werden die Folgen der maximalen Dehnung geprüft. Dutch einfache Argumente wirdt gezeigt, dass kleine Defekte kritischer sein können als grosse, und dass makroskopische Bruchdehnungen nur vom viscoelastischen Materialverhalten beeinflusstwerden, wenn die maximale ein-achsige Dehnung sehr gross ist, angenommen das Verhältnis von Hohlvolumen zu Material Volumen ist typisch klein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Howard, R.N. The Extension and Rupture of Cellulose Acetate and Celluloid. Trans. Faraday Soc., 38, 396–403, (1942).

    Google Scholar 

  2. Tobolsky, A. V.,Eyring H. Mechanical Properties of Polymeric Materials. J.Chem.Phys., 11, 125–134 (1943).

    Google Scholar 

  3. Smith, T.L. Dependence of the Ultimate Properties of GR-S Rubber on Strain Rate and Temperature, J. Pol. Sci., 32, 99–113, (October 1958).

    Google Scholar 

  4. Smith, T.L. Time and Temperature Dependence of the Ultimate Properties of an SBR Rubber at Constant Elongations. J.Appl.Phys., 31, 1892–1898, (November 1960).

    Google Scholar 

  5. Smith, T.L. Stress-Strain-Time Temperature Relationships for Polymers. Symposium on Stress-Strain-Time-Temperature Relationships in Material, published by the American Society for Testing and Materials, 60–89, (1962).

  6. Bueche, F. Tensile Strength of Plastics above the Glass Temperature. J. Appl. Phys., 26, 1133–1140, (1955). see also:

    Google Scholar 

  7. Bueche, F. Tensile Strength of Plastic below the Glass Temperature. J.Appl. Phys., 28, 784–787, (1959).

    Google Scholar 

  8. Knauss, W.G. Rupture Phenomena in Viscoelastic Materials. Ph.D. Dissertation, California Institute of Technology, Pasadena, California, (June 1963). See also The Time-Dependent Fracture of Viscoelastic Materials. Proceedings of the First International Conference on Fracture, Sendai, Japan, (September 1965).

    Google Scholar 

  9. Bueche, F., Halpin, J.C. Molecular Theory for the Tensile Strength of Gum Elastomers, J.Appl. Phys., 35, 36–41, (1964).

    Google Scholar 

  10. Gent, A. N., Lindley, T.B., Thomas A. G. Cut Growth and Fatigue of Rubbers. I. The Relationship between Cut Growth land Fatigue of Rubbers. I. The Relationship between Cut Growth and Fatigue. J.Appl.Pol.Sci., 8, 455, (1964).

    Google Scholar 

  11. Smith, T.L. Ultimate Tensile Properties of Elastomers. I. Characterization by a Time and Temperature Independent Failure Envelope. J.Pol.Sci., 1, 3597–3615, (1963). II. Comparison of Failure Envelopes for Unfilled Vulcanizates. J.Appl.Phys., 35, 27–36, (1964). III. Dependence of the Failure Envelope on Crosslink Density. Proceedings of the Fourth International Conference on Rheology, Brown University, Providence, Rhode Island, (August 1963).

    Google Scholar 

  12. Smith, T. L., Frederick J.E. Ultimate Tensile Properties of Elastomers. IV. Dependence of the Failure Envelope, Maximum Extensibility, and Equilibrium Stress-Strain Curve on Network Characteristics. J.Appl.Phys., 36, 10, 2996–3005, (October 1965)

    Google Scholar 

  13. Landel, R. F., Fedors, R. F. Rupture of Amorphous Unfilled Polymers. Fracture Processes in Polymeric Solids, edited by B. Rosen, Interscience Publishers, (1964). see also; The Tensile Failure Envelope of Amorphous Elastomers: Effects of Statistical Variability and Crosslink Density. Proceedings of the Fourth International Congress on Rheology, Brown University, Providence, Rhode Island, (August 1963).

  14. Fedors, R. F., Landel, R. F. Relationship between Maximum Extensibility of Networks and the Degree of Crosslinking and Primary Molecular Weight. SPS 37-37, IV, 139–142, Jet Propulsion Laboratories, California Institute of Technology, Pasadena, California.

  15. Williams, M.L., Schapery R.A. Spherical Flaw Instability in Hydrostatic Tension. Inter. Jour. Frac. Mech., 1, 64–71, (March 1965).

    Google Scholar 

  16. Lindsey, G.H.Hydrostatic Tensile Fracture of a Polyurethane Elastomer. Ph.D.Thesis, California Institute of Technology, Pasadena, California, (June 1965); Aerospace Research Laboratories, Report ARL 66–0029, (February 1966).

    Google Scholar 

  17. Williams, M.L.The Fracture of Viscoelastic Materials in Fracture of Solids, edited by Drucker and Gilman, Interscience Publishers, (1963).

  18. Lindsey, G. H., Schapery R.A. Williams M. L. Zak A. R. The Triaxial Tension Failure of Viscoelastic Materials. SM 63–6, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, California, 1963, (Aerospace Research Laboratories, Report ARL 63–152).

    Google Scholar 

  19. Blatz, P.J., Tschoegl, N.W., Landel R.F. Knauss W. G., and Arenz R. J. A Research Program on Solid Propellant Physical Behavior, MATSCIT PS 66–6, Materials Science California, Institute of Technology,Pasadena, California (May 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the National Aeronautics and Space Administration through Research Grant NsG-172-60, GALCIT 120.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knauss, W.G. An upper bound of failure in viscoelastic materials subjected to multiaxial stress states. Int J Fract 3, 267–277 (1967). https://doi.org/10.1007/BF00182892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182892

Keywords

Navigation