Skip to main content
Log in

Numerical modeling of the nucleation of facets ahead of a primary crack under mode I + III loading

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A numerical study of crack front segmentation under mode I + III loading is proposed. Facets initiation ahead of a parent crack is predicted through a tridimensional application of the coupled criterion. Crack initiation shape, orientation and spacing are determined for any mode mixity ratio by coupling a stress and an energy criterion using matched asymptotic expansions. The stress and the energy conditions are computed through a 3D finite element modeling of a periodic network of facets ahead of the parent crack. The initiation shape, loading and spacing of facets depend on the blunted parent crack tip radius. A good estimate of facet orientations is obtained based on the direction of maximum tensile stress. The facet shapes, determined using the stress isocontours, are qualitatively similar to those observed experimentally. The order of magnitude of numerical predictions of facets spacing is very close to experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Buchholz FB, Chergui A, Richard HA (2004) Fracture analyses and experimental results of crack growth under general mixed mode loading conditions. Eng Fract Mech 71:455–468

    Article  Google Scholar 

  • Cambonie T, Lazarus V (2014) Quantification of the crack fragmentation resulting from mode I + III loading. Procedia Mater Sci 3:1816–1821

    Article  Google Scholar 

  • Chen CH, Cambonie T, Lazarus V, Nicoli M, Pons AJ, Karma A (2015) Crack front segmentation and facet coarsening in mixed-mode fracture. Phys Rev Lett 115:265503

    Article  Google Scholar 

  • Citarella R, Buchholz FG (2008) Comparison of crack growth simulation by DBEM and FEM for SEN specimens undergoing torsion or bending loading. Eng Fract Mech 75:489–509

    Article  Google Scholar 

  • Cox SJD, Scholz CH (1988) On the formation and growth of faults: an experimental study. J Struct Geol 10:413–430

    Article  Google Scholar 

  • Dhondt G, Chergui A, Buchholz FG (2001) Computational fracture analysis of different specimens regarding 3D and mode coupling effects. Eng Fract Mech 68:383–401

    Article  Google Scholar 

  • Doitrand A, Fagiano C, Carrère N, Chiaruttini V, Hirsekorn M (2017) Damage onset modeling in woven composites based on a coupled stress and energy criterion. Eng Fract Mech 169:189–200

    Article  Google Scholar 

  • Doitrand A, Fagiano C, Hild F, Chiaruttini V, Mavel A, Hirsekorn M (2017) Mesoscale analysis of damage growth in woven composites energy criterion. Compos Part A 96:77–88

    Article  Google Scholar 

  • Doitrand A, Leguillon D (2018) 3D application of the coupled criterion to crack initiation prediction in epoxy/aluminum specimens under four point bending. Int J Solids Struct 143:175–182. https://doi.org/10.1016/j.ijsolstr.2018.03.005

    Article  Google Scholar 

  • Doitrand A, Leguillon D (2018) Comparison between 2D and 3D applications of the coupled criterion to crack initiation prediction in scarf adhesive joints. Int J Adhes Adhes 85:69–76

    Article  Google Scholar 

  • Eberlein A, Richard HA, Kullmer G (2017) Facet formation at the crack front under combined crack opening and anti-plane shear loading. Eng Fract Mech 174:21–29

    Article  Google Scholar 

  • http://www.zset-software.com/products/zebulon/

  • Knauss WG (1970) An observation of crack propagation in antiplane shear. Int J Fract 6:183–187

    Google Scholar 

  • Lazarus V, Buchholz FG, Fulland M, Wiebesiek J (2008) Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments. Int J Fract 153:141–151

    Article  Google Scholar 

  • Leblond JB, Karma A, Lazarus V (2011) Theoretical analysis of crack front instability in mode I + III. J Mech Phys Solids 59:1872–1887

    Article  Google Scholar 

  • Leblond JB, Lazarus V, Karma A (2015) Multiscale cohesive zone model for propagation of segmented crack fronts in mode I + III fracture. Int J Fract 191:167–189

    Article  Google Scholar 

  • Leguillon D, Sanchez-Palencia E (1987) Computation of singular solutions in elliptic problems and elasticity. Wiley, New York

    Google Scholar 

  • Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A Solids 21:61–72

    Article  Google Scholar 

  • Leguillon D, Yosibash Z (2003) Crack onset at a V-notch. Influence of the notch tip radius. Int J Fract 122:1–21

    Article  Google Scholar 

  • Leguillon D, Quesada D, Putot C, Martin E (2007) Prediction of crack initiation at blunt notches and cavities—size effects. Eng Fract Mech 74:2420–2436

    Article  Google Scholar 

  • Leguillon D (2011) Determination of the length of a short crack at a V-notch from a full field measurement. Int J Solids Struct 48:884–892

    Article  Google Scholar 

  • Leguillon D (2014) An attempt to extend the 2D coupled criterion for crack nucleation in brittle materials to the 3D case. Theor Appl Fract Mech 74:7–17

    Article  Google Scholar 

  • Leguillon D, Li J, Martin E (2017) Multi-cracking in brittle thin layers and coatings using a FFM model. Eur J Mech A Solids 63:14–21

    Article  Google Scholar 

  • Mittelman B, Yosibash Z (2015) Energy release rate cannot predict crack initiation orientation in domains with a sharp V-notch under mode III loading. Eng Fract Mech 141:230–241

    Article  Google Scholar 

  • Pham KH, Ravi-Chandar K (2014) Further examination of the criterion for crack initiation under mixed mode I + III loading. Int J Fract 189:121–138

    Article  Google Scholar 

  • Pham KH, Ravi-Chandar K (2016) On the growth of cracks under mixed-mode I + III loading. Int J Fract 199:105–134

    Article  Google Scholar 

  • Pollard DD, Segall P, Delaney PT (1982) Formation and interpretation of dilatant echelon cracks. Geol Soc Am Bull 93:1291–1303

    Article  Google Scholar 

  • Pons AJ, Karma A (2010) Helical crack-front instability in mixed-mode fracture. Nature 464:85–89

    Article  Google Scholar 

  • Picard D, Leguillon D, Putot C (2006) A method to estimate the influence of the notch-root radius on the fracture toughness measurement of ceramics. J Eur Cer Soc 26:1421–1427

    Article  Google Scholar 

  • Sommer E (1969) Formation of fracture lances in glass. Eng Fract Mech 1:539–546

    Article  Google Scholar 

  • Weißgraeber P, Leguillon D, Becker W (2016) A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers. Arch Appl Mech 86:375–401

    Article  Google Scholar 

  • Westergaard HM (1934) Stresses at a crack, size of the crack and the bending of reinforced concrete. Proc Am Concr Inst 30:93–102

    Google Scholar 

  • Yosibash Z, Mittelman B (2016) A 3-D failure initiation criterion from a sharp V-notch edge in elastic brittle structures. Eur J Mech A Solids 60:70–94

    Article  Google Scholar 

  • Younes AI, Engelder T (1999) Fringe cracks: key structures for the interpretation of the progressive Alleghanian deformation of the Appalachian plateau. GSA Bull 111:219–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Doitrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The matched asymptotic expansions

The actual domain embeds the parent blunted crack (root radius R) and a group of small slanted crack regularly spaced. The outer domain is obtained for \(R \rightarrow 0\), and as a consequence \(l \rightarrow 0\) since it is assumed that l is smaller or of the same order of magnitude than R (to be checked afterwards). In the outer domain, the blunted crack becomes a slit with no thickness. Both actual and outer domains are spanned by the Cartesian space variables \(x_i\) (\(i=1,3\)) (\(r,\theta ,x_3\), in cylindrical coordinates).The outer expansion with respect to the small parameter R can be written (\(\nabla _x\) is the gradient operator with respect to the \(x_i\)’s)

$$\begin{aligned} \left\{ \begin{array}{ll} \underline{U}^R(x_1,x_2,x_3,l) = \underline{U}^0(x_1,x_2,x_3)+\cdots \\ \underline{\underline{\sigma }}(\underline{U}^R) = \mathbf {C}:\nabla _x\underline{U}^R=\mathbf {C}:\nabla _x\underline{U}^0+\cdots \end{array}\right. \end{aligned}$$
(13)

The dots denote a remainder that is small and decreases with R. The behavior of the leading term of Eq. (13) near the crack tip is described by the Williams series (polar and Cartesian coordinates are mixed without risk of confusion)

$$\begin{aligned} \begin{aligned} \underline{U}^0(x_1,x_2,x_3) =\,&\underline{C}+K_{\mathrm {I}}\sqrt{r}\underline{u}_{\mathrm {I}}(\theta )+K_{\mathrm {III}}\sqrt{r}\underline{u}_{\mathrm {III}}(\theta )+\cdots \\ = \,&\underline{C}+K_{\mathrm {I}}\sqrt{r}[\underline{u}_{\mathrm {I}}(\theta )+m\underline{u}_{\mathrm {III}}(\theta )]+\cdots \\&\mathrm {with}\, m=\frac{K_{\mathrm {III}}}{K_{\mathrm {I}}}=(\frac{1}{\beta }-1)^{-1} \end{aligned} \end{aligned}$$
(14)

The leading term is an irrelevant constant (rigid translation), \(K_{\mathrm {I}}\) and \(K_{\mathrm {III}}\) are the modes I and III stress intensity factors and \(\underline{u}_{\mathrm {I}}\) and \(\underline{u}_{\mathrm {III}}\) are the associated opening and shear modes. The intensity factors \(K_{\mathrm {I}}\) and \(K_{\mathrm {III}}\) are independent of \(x_3\) as a consequence of the first assumption stated at the end of Sect. 2.

The inner domain is obtained by zooming in the actual domain by 1 / R and considering again the limit as \(R\rightarrow 0\). It is an unbounded domain spanned by the dimensionless space variables \(y_i=x_i/R\) (\(i=1,3\)); it embeds the semi-infinite parent crack and an infinite number of regularly spaced slanted cracks with length \(\lambda =l/R\) along \(y_1\) axis. In the \(y_3\) direction, a periodicity assumption is done reducing the domain to a single period of length \(\epsilon =e/R\) in this direction (see Figs. 13).

After fulfilling the matching conditions (Leguillon and Sanchez-Palencia 1987), the inner expansion can be written

$$\begin{aligned} \begin{aligned} \underline{U}^R(x_1,x_2,x_3,l)&= \underline{U}^R(Ry_1,Ry_2,Ry_3,R\lambda )\\&= \underline{C}+K_{\mathrm {I}}\sqrt{R}\underline{V}_{\mathrm {I}}(y_1,y_2,y_3,\lambda ) \\&\quad +K_{\mathrm {III}}\sqrt{R}\underline{V}_{\mathrm {III}}(y_1,y_2,y_3,\lambda )+\cdots \\&= \underline{C}+K_{\mathrm {I}}\sqrt{R}[\underline{V}_{\mathrm {I}}(y_1,y_2,y_3,\lambda ) \\&\quad +m\underline{V}_{\mathrm {III}}(y_1,y_2,y_3,\lambda )]+\cdots \end{aligned} \end{aligned}$$
(15)

where \(\underline{V}_{\mathrm {I}}\) (respectively \(\underline{V}_{\mathrm {III}}\)) behaves like \(\sqrt{\rho } \underline{u}_{\mathrm {I}}(\theta )\) (respectively \(\sqrt{\rho } \underline{u}_{\mathrm {III}}(\theta )\)) at infinity (\(\rho =r/R \rightarrow \infty \)). Relationship (15) can be rewritten for the purpose of full FE calculations

$$\begin{aligned} \left\{ \begin{array}{ll} \underline{U}^R(x_1,x_2,x_3,l) = \underline{C}+ K_{\mathrm {I}}\sqrt{R}\underline{W}\left( y_1,y_2,y_3,\lambda \right) +\cdots \\ \underline{\underline{\sigma }}(\underline{U}^R) = \frac{1}{R}\mathbf {C}:\nabla _y\underline{U}^R=\frac{K_{\mathrm {I}}}{\sqrt{R}}\mathbf {C}:\nabla _y\underline{W}=\frac{K_{\mathrm {I}}}{\sqrt{R}}\underline{\underline{\tilde{\sigma }}}(\underline{W}) \end{array}\right. \end{aligned}$$
(16)

where \(\underline{W}=\underline{V}_{\mathrm {I}}+m\underline{V}_{\mathrm {III}}\) behaves at infinity like \(\sqrt{\rho } \underline{u}_{\mathrm {I}}(\theta )+m\sqrt{\rho } \underline{u}_{\mathrm {III}}(\theta )\). According to Leguillon et al. (2007), the change in potential energy takes the form

$$\begin{aligned} \begin{aligned} -\delta W_{\mathrm {p}} =\,&\varPsi _x\left( \underline{U}^R\left( x_1,x_2,x_3,l\right) , \underline{U}^R(x_1,x_2,x_3,0) \right) \\ =\,&\varPsi _x\left( \underline{U}^R(x_1,x_2,x_3,l), \underline{U}^0(x_1,x_2,x_3)\right) \\&- \varPsi _x\left( \underline{U}^R(x_1,x_2,x_3,0), \underline{U}^0(x_1,x_2,x_3)\right) \end{aligned} \end{aligned}$$
(17)

where

$$\begin{aligned} \varPsi _x(\underline{F},\underline{G})=\frac{1}{2}\int _{\Gamma _x} \left[ \underline{\underline{\sigma }}(\underline{F}){\cdot }\underline{n}{\cdot }\underline{G}-\underline{\underline{\sigma }}(\underline{G}){\cdot }\underline{n}{\cdot }\underline{F}\right] \mathrm {d}s \end{aligned}$$
(18)

The contour \(\Gamma _x\) starts from the stress free edges of the crack and embeds the blunted notch and the crack extension. The integral (18) is path indepedent for any two functions \(\underline{F}\) and \(\underline{G}\) fulfilling the equilibrium equations. The index x in Eqs. (17) and (18) recalls that the calculations are a priori carried out in the actual (using the actual solution) or the outer domain [using the outer expansion but this requires calculating the remainder in (13) (Leguillon 2011)].

Taking into account the change of variables defined by the dilatation in the inner domain, (18) rewrites

$$\begin{aligned} \varPsi _x(\underline{F},\underline{G})&=\frac{R}{2}\int _{\Gamma _y}\left[ \underline{\underline{\tilde{\sigma }}}(\underline{F}){\cdot }\underline{n}{\cdot }\underline{G}-\underline{\underline{\tilde{\sigma }}}(\underline{G}){\cdot }\underline{n}{\cdot }\underline{F}\right] \mathrm {d}S\nonumber \\&=R\varPsi _y(\underline{F},\underline{G}) \end{aligned}$$
(19)

Because \(\mathrm {d}S=R^2 \times \mathrm {d}s\) (while \(\mathrm {d}S=R \times \mathrm {d}s\) in 2D leading to two similar relationships expressed either with respect to the \(x_i\)’s or the \(y_i\)’s). Then

$$\begin{aligned} -\delta W_{\mathrm {p}}&= K_{\mathrm {I}}^2R^2\left[ \varPsi _y\left( \underline{W}(y_1,y_2,y_3,\lambda ), \sqrt{\rho }[\underline{u}_{\mathrm {I}}(\theta )+m\underline{u}_{\mathrm {III}}(\theta )\right] \right) \nonumber \\&\quad - \varPsi _y\left( \underline{W}(y_1,y_2,y_3,0), \sqrt{\rho }\left[ \underline{u}_{\mathrm {I}}(\theta )+m\underline{u}_{\mathrm {III}}(\theta )\right] \right) \nonumber \\&= K_{\mathrm {I}}^2R^2\left( B(\lambda )-B(0)\right) +\cdots \end{aligned}$$
(20)

Note that \(B(\lambda )-B(0)\) is nothing but the change in potential energy computed in the \(y_i\) variables when moving from \(\underline{W}(y_1,y_2,y_3,0)\) to \(\underline{W}(y_1,y_2,y_3,\lambda )\).

With a newly created crack surface \(S=\alpha l^2\) (\(\alpha \) is a scaling coefficient) it comes the energy condition

$$\begin{aligned} G_{\mathrm {inc}}=-\frac{\delta W_{\mathrm {P}}}{S} =K_{\mathrm {I}}^2 \frac{B(\lambda )-B(0)}{\alpha \lambda ^2}\ge G_{\mathrm {c}} \end{aligned}$$
(21)

Denoting \(\sigma \) and \(\tilde{\sigma }\) the tensile component of the corresponding stress tensors, the stress condition can be written

$$\begin{aligned} \sigma (\underline{U}^R)=\frac{K_{\mathrm {I}}}{\sqrt{R}}\tilde{\sigma }(\underline{W})\ge \sigma _{\mathrm {c}} \end{aligned}$$
(22)

here \(\tilde{\sigma }(\underline{W})\) is nothing but the tensile stress computed in the \(y_i\) variables.

Combining (21) and (22) gives the equation for the dimensionless crack extension length \(\lambda _{\mathrm {c}}\)

$$\begin{aligned} \frac{1}{\tilde{\sigma }(\lambda _{\mathrm {c}})}\frac{B(\lambda )-B(0)}{\alpha \lambda _{\mathrm {c}}^2}=\frac{1}{R} \frac{G_{\mathrm {c}}}{\sigma _{\mathrm {c}}^2} \end{aligned}$$
(23)

In this equation \(\tilde{\sigma }(\lambda _{\mathrm {c}})\) denotes the tensile stress associated with \(\underline{W}\), expressed in the \(y_i\) variables and computed at a dimensionless distance \(\lambda _{\mathrm {c}}\) of the notch root along the \(y_1\) axis. Then the load at failure can be derived from (21)

$$\begin{aligned} K_{\mathrm {Ic}}^{\mathrm {app}}=\sqrt{\frac{ \alpha \lambda _{\mathrm {c}}^2G_{\mathrm {c}}}{B(\lambda _{\mathrm {c}})-B(0)}} \ ;\ K_{\mathrm {IIIc}}^{\mathrm {app}}=mK_{\mathrm {Ic}}^{\mathrm {app}} \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doitrand, A., Leguillon, D. Numerical modeling of the nucleation of facets ahead of a primary crack under mode I + III loading. Int J Fract 213, 37–50 (2018). https://doi.org/10.1007/s10704-018-0305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-018-0305-8

Keywords

Navigation