Skip to main content
Log in

A geometrically nonlinear phase field theory of brittle fracture

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Phase field theory is developed for solids undergoing potentially large deformation and fracture. The elastic potential depends on a finite measure of elastic strain. Surface energy associated with fracture can be anisotropic, enabling description of preferred cleavage planes in single crystals, or isotropic, applicable to amorphous solids such as glass. Incremental solution of the Euler–Lagrange equations corresponds to local minimization of an energy functional for the solid, enabling prediction of equilibrium crack morphologies. Predictions are in close agreement with analytical solutions for pure mode I or pure mode II loading, including the driving force for a crack to extend from a pre-existing plane onto a misoriented cleavage plane. In an isotropic matrix, the tendency for a crack to penetrate or deflect around an inclusion is shown to depend moderately on the ratio of elastic stiffness in matrix and inclusion and strongly on their ratio of surface energy. Cracks are attracted to (shielded by) inclusions softer (stiffer) than the surrounding matrix. The theory and results apparently report the first fully three-dimensional implementation of phase field theory of fracture accounting for simultaneous geometric nonlinearity, nonlinear elasticity, and surface energy anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdollahi A, Arias I (2012) Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals. Int J Fract 174:3–15

    Article  Google Scholar 

  • Alber HD (2012) A model for brittle fracture based on the hybrid phase field model. Contin Mech Thermodyn 24:391–402

    Article  Google Scholar 

  • Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  Google Scholar 

  • Arias I, Knap J, Chalivendra V, Hong S, Ortiz M, Rosakis A (2007) Numerical modelling and experimental validation of dynamic fracture events along weak planes. Comput Methods Appl Mech Eng 196:3833–3840

    Article  Google Scholar 

  • Atkinson C (1972) The interaction between a crack and an inclusion. Int J Eng Sci 10:127–136

    Article  Google Scholar 

  • Borden M, Verhoosel C, Scott M, Hughes T, Landis C (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  Google Scholar 

  • Clayton J (2005) Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J Mech Phys Solids 53:261–301

    Article  Google Scholar 

  • Clayton J (2006) Continuum multiscale modeling of finite deformation plasticity and anisotropic damage in polycrystals. Theoret Appl Fract Mech 45:163–185

    Article  Google Scholar 

  • Clayton J (2008) A model for deformation and fragmentation in crushable brittle solids. Int J Impact Eng 35:269–289

    Article  Google Scholar 

  • Clayton J (2009) A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc R Soc Lond A 465:307–334

    Article  Google Scholar 

  • Clayton J (2010) Deformation, fracture, and fragmentation in brittle geologic solids. Int J Fract 163:151–172

    Article  Google Scholar 

  • Clayton J (2010) Modeling nonlinear electromechanical behavior of shocked silicon carbide. J Appl Phys 107:013,520

    Article  Google Scholar 

  • Clayton J (2011) Nonlinear Mechanics of Crystals. Springer, Dordrecht

    Book  Google Scholar 

  • Clayton J (2014) Finite strain analysis of shock compression of brittle solids applied to titanium diboride. Int J Impact Eng 73:56–65

    Article  Google Scholar 

  • Clayton J, Knap J (2011) A phase field model of deformation twinning: nonlinear theory and numerical simulation. Physica D 240:841–858

  • Clayton J, Knap J (2011) Phase field modeling of twinning in indentation of transparent crystals. Model Simul Mater Sci Eng 19:085,005

    Article  Google Scholar 

  • Clayton J, Knap J (2013) Phase-field analysis of fracture-induced twinning in single crystals. Acta Mater 61:5341–5353

    Article  Google Scholar 

  • Clayton J, McDowell D (2003) Finite polycrystalline elastoplasticity and damage: multiscale kinematics. Int J Solids Struct 40:5669–5688

    Article  Google Scholar 

  • Clayton J, McDowell D (2004) Homogenized finite elastoplasticity and damage: theory and computations. Mech Mater 36:799–824

    Article  Google Scholar 

  • Del Piero G, Lancioni G, March R (2007) A variational model for fracture mechanics: numerical experiments. J Mech Phys Solids 55:2513–2537

  • Eastgate L, Sethna J, Rauscher M, Cretegny T (2002) Fracture in mode I using a conserved phase-field model. Phys Rev E 65:036,117

    Article  Google Scholar 

  • Erdogan F, Gupta G, Ratwani M (1974) Interaction between a circular inclusion and an arbitrarily oriented crack. J Appl Mech 41:1007–1013

    Article  Google Scholar 

  • Espinosa H, Zavattieri P (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: theory and numerical implementation. Mech Mater 35:333–364

    Article  Google Scholar 

  • Evans A (1974) The role of inclusions in the fracture of ceramic materials. J Mater Sci 9:1145–1152

    Article  Google Scholar 

  • Faber K, Evans A (1983) Intergranular crack-deflection toughening in silicon carbide. J Am Ceram Soc 66:C94–C96

    Article  Google Scholar 

  • Foulk J, Vogler T (2010) A grain-scale study of spall in brittle materials. Int J Fract 163:225–242

    Article  Google Scholar 

  • Gell M, Smith E (1967) The propagation of cracks through grain boundaries in polycrystalline 3% silicon–iron. Acta Metal 15:253–258

    Article  Google Scholar 

  • Gilman J (1960) Direct measurements of the surface energies of crystals. J Appl Phys 31:2208–2218

    Article  Google Scholar 

  • Gilman J (2003) Electronic basis of the strength of materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368

    Article  Google Scholar 

  • He MY, Hutchinson J (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25:1053–1067

    Article  Google Scholar 

  • Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129

    Article  Google Scholar 

  • Jin Y, Wang Y, Khachaturyan A (2001) Three-dimensional phase field microelasticity theory and modeling of multiple cracks and voids. Appl Phys Lett 79:3071–3073

    Article  Google Scholar 

  • Kim BY, Wakayama S, Kawahara M (1996) Characterization of 2-dimensional crack propagation behavior by simulation and analysis. Int J Fract 75:247–259

    Article  Google Scholar 

  • Knap J, Ortiz M (2003) Effect of indenter-radius size on Au(001) nanoindentation. Phys Rev Lett 90:226,102

    Article  Google Scholar 

  • Knap J, Sieradzki K (1999) Crack tip dislocation nucleation in FCC solids. Phys Rev Lett 82:1700–1703

    Article  Google Scholar 

  • Kuhn C, Muller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634

    Article  Google Scholar 

  • Lawn B (1968) Hertzian fracture in single crystals with the diamond structure. J Appl Phys 39:4828–4836

    Article  Google Scholar 

  • Lawn B, Padture N, Cai H, Guiberteau F (1994) Making ceramics “ductile”. Science 263:1114–1116

    Article  Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field model of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    Article  Google Scholar 

  • Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

  • Murrell S (1965) The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures. Geophys J R Astr Soc 10:231–281

    Article  Google Scholar 

  • Nuismer R (1975) An energy release rate criterion for mixed mode fracture. Int J Fract 11:245–250

  • Ohji T, Jeong YK, Choa YH, Niihara K (1998) Strengthening and toughening mechanisms of ceramic nanocomposites. J Am Ceram Soc 81:1453–1460

    Article  Google Scholar 

  • Rice J (1968) Mathematical analysis in the mechanics of fracture. In: Liebowitz H (ed) Fracture: an advanced treatise. Academic Press, New York, pp 191–311

    Google Scholar 

  • Schultz R, Jensen M, Bradt R (1994) Single crystal cleavage of brittle materials. Int J Fract 65:291–312

    Article  Google Scholar 

  • Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95

    Article  Google Scholar 

  • Sun X, Khaleel M (2004) Modeling of glass fracture damage using continuum damage mechanics-static spherical indentation. Int J Damage Mech 13:263–285

    Article  Google Scholar 

  • Tamate O (1968) The effect of a circular inclusion on the stresses around a line crack in a sheet under tension. Int J Fract Mech 4:257–266

    Google Scholar 

  • Voyiadjis G, Mozaffari N (2013) Nonlocal damage model using the phase field method: theory and applications. Int J Solids Struct 50:3136–3151

    Article  Google Scholar 

  • Wiederhorn S (1984) Brittle fracture and toughening mechanisms in ceramics. Ann Rev Mater Sci 14:373–403

    Article  Google Scholar 

  • Wilshaw T (1971) The Hertzian fracture test. J Phys D Appl Phys 4:1567–1581

    Article  Google Scholar 

  • Xu L, Huang Y, Rosakis A (2003) Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions. J Mech Phys Solids 51:461–486

    Article  Google Scholar 

  • Xu XP, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci Eng 1:111–132

    Article  Google Scholar 

  • Zhang S, Zhu T, Belytschko T (2007) Atomistic and multiscale analyses of brittle fracture in crystal lattices. Phys Rev B 76:094,114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clayton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, J.D., Knap, J. A geometrically nonlinear phase field theory of brittle fracture. Int J Fract 189, 139–148 (2014). https://doi.org/10.1007/s10704-014-9965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-014-9965-1

Keywords

Navigation