Skip to main content
Log in

Percentile queries in multi-dimensional Markov decision processes

  • Published:
Formal Methods in System Design Aims and scope Submit manuscript

Abstract

Markov decision processes (MDPs) with multi-dimensional weights are useful to analyze systems with multiple objectives that may be conflicting and require the analysis of trade-offs. We study the complexity of percentile queries in such MDPs and give algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function f, thresholds \(v_i\) (one per dimension), and probability thresholds \(\alpha _i\), we show how to compute a single strategy to enforce that for all dimensions i, the probability of outcomes \(\rho \) satisfying \(f_i(\rho ) \ge v_i\) is at least \(\alpha _i\). We consider classical quantitative payoffs from the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). Our work extends to the quantitative case the multi-objective model checking problem studied by Etessami et al. (Log Methods Comput Sci 4(4), 2008) in unweighted MDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The projection of a run \((s_1,m_1),a_1,(s_2,m_2),a_2,\ldots \) in \(M_s^\sigma \) to M is simply the run \(s_{1}a_{1}s_{2}a_{2}\ldots {}\) in M.

References

  1. Baier C, Daum M, Dubslaff C, Klein J, Klüppelholz S (2014) Energy-utility quantiles. In: NASA formal methods, LNCS 8430, Springer, pp 285–299

  2. Bertsekas DP, Tsitsiklis JN (1991) An analysis of stochastic shortest path problems. Math Oper Res 16:580–595

    Article  MathSciNet  MATH  Google Scholar 

  3. Boker U, Henzinger TA (2014) Exact and approximate determinization of discounted-sum automata. Log Methods Comput Sci 10(1)

  4. Boker U, Henzinger TA, Otop J (2015) The target discounted-sum problem. In: IEEE Proceedings of LICS, pp 750–761

  5. Brázdil T, Chen T, Forejt V, Novotný P, Simaitis A (2013) Solvency Markov decision processes with interest. In: Proceedings of FSTTCS, volume 24 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp 487–499

  6. Brázdil T, Brozek V, Chatterjee K, Forejt V, Kucera A (2014) Markov decision processes with multiple long-run average objectives. Log Methods Comput Sci 10(13):1–29

    MathSciNet  MATH  Google Scholar 

  7. Bruyère V, Filiot E, Randour M, Raskin J-F (2014) Meet your expectations with guarantees: beyond worst-case synthesis in quantitative games. In: Proceedings of STACS, volume 25 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp 199–213

  8. Chatterjee K (2007) Concurrent games with tail objectives. Theore Comput Sci 388(1 3):181–198

    Article  MathSciNet  MATH  Google Scholar 

  9. Chatterjee K, Doyen L, Henzinger TA, Raskin J-F (2010) Generalized mean-payoff and energy games. In: Proceedings of FSTTCS, volume 8 of LIPIcs, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp 505–516

  10. Chatterjee K, Doyen L, Randour M, Raskin J-F (2015) Looking at mean-payoff and total-payoff through windows. Inf Comput 242:25–52

    Article  MathSciNet  MATH  Google Scholar 

  11. Chatterjee K, Forejt V, Wojtczak D (2013) Multi-objective discounted reward verification in graphs and MDPs. In: Proceedings of LPAR, LNCS 8312, Springer, pp 228–242

  12. Chatterjee K, Henzinger TA (2009) Probabilistic systems with limsup and liminf objectives. In: Brattka MAV, Löwe VGB (eds), Infinity in logic and computation, LNCS 5489, Springer, pp 32–45

  13. Chatterjee K, Komárková Z, Kretínský J (2015) Unifying two views on multiple mean-payoff objectives in Markov decision processes. In: Proceedings of LICS, pp 244–256

  14. Chatterjee K, Majumdar R, Henzinger TA (2006) Markov decision processes with multiple objectives. In: Proceedings of STACS, LNCS 3884, Springer, pp 325–336

  15. Chatterjee K, Randour M, Raskin J-F (2014) Strategy synthesis for multi-dimensional quantitative objectives. Acta Inform 51(3–4):129–163

    Article  MathSciNet  MATH  Google Scholar 

  16. de Alfaro L (1997) Formal verification of probabilistic systems. Ph.D. thesis, Stanford University

  17. de Alfaro L (1999) Computing minimum and maximum reachability times in probabilistic systems. In: Proceedings of CONCUR, LNCS 1664, Springer, pp 66–81

  18. Etessami K, Kwiatkowska M, Vardi MY, Yannakakis M (2008) Multi-objective model checking of Markov decision processes. Log Methods in Comput Sci 4(4)

  19. Filar JA, Krass D, Ross KW (1995) Percentile performance criteria for limiting average Markov decision processes. IEEE Trans Autom Control 40(1):2–10

    Article  MathSciNet  MATH  Google Scholar 

  20. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York

    MATH  Google Scholar 

  21. Goldreich O (2006) On promise problems: a survey. In: Goldreich O, Rosenberg A, Selman AL (eds), Theoretical computer science, essays in memory of Shimon Even, LNCS 3895, Springer, pp 254–290

  22. Haase C, Kiefer S (2015) The odds of staying on budget. In: Proceedings of ICALP, LNCS 9135, Springer, pp 234–246

  23. Haase C, Kiefer S (2016) The complexity of the Kth largest subset problem and related problems. Inf Process Lett 116(2):111–115

    Article  MATH  Google Scholar 

  24. Johnson DB, Kashdan SD (1978) Lower bounds for selection in X + Y and other multisets. J ACM 25(4):556–570

    Article  MathSciNet  MATH  Google Scholar 

  25. Minsky ML (1961) Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Ann Math 74(3):437–455

    Article  MathSciNet  MATH  Google Scholar 

  26. Ohtsubo Y (2004) Optimal threshold probability in undiscounted Markov decision processes with a target set. Appl Math Comput 149(2):519–532

    MathSciNet  MATH  Google Scholar 

  27. Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming, 1st edn. Wiley, New York

    Book  MATH  Google Scholar 

  28. Randour M, Raskin J-F, Sankur O (2015) Percentile queries in multi-dimensional Markov decision processes. In: Proceedings of CAV, LNCS 9206, Springer, pp 123–139

  29. Randour M, Raskin J-F, Sankur O (2015) Variations on the stochastic shortest path problem. In: Proceedings of VMCAI, LNCS 8931, Springer, pp 1–18

  30. Sakaguchi M, Ohtsubo Y (2013) Markov decision processes associated with two threshold probability criteria. J Contro Theory Appl 11(4):548–557

    Article  MathSciNet  MATH  Google Scholar 

  31. Toda S (1991) PP is as hard as the polynomial-time hierarchy. SIAM J Comput 20(5):865–877

    Article  MathSciNet  MATH  Google Scholar 

  32. Tracol M (2009) Fast convergence to state-action frequency polytopes for MDPs. Oper Res Lett 37(2):123–126

    Article  MathSciNet  MATH  Google Scholar 

  33. Travers SD (2006) The complexity of membership problems for circuits over sets of integers. Theor Comput Sci 369(1–3):211–229

    Article  MathSciNet  MATH  Google Scholar 

  34. Ummels M, Baier C (2013) Computing quantiles in Markov reward models. In: Proceedings of FOSSACS, LNCS 7794, Springer, pp 353–368

  35. Vardi MY (1985) Automatic verification of probabilistic concurrent finite-state programs. In: IEEE Proceedings of FOCS, pp 327–338

  36. White DJ (1993) Minimizing a threshold probability in discounted Markov decision processes. J Math Anal Appl 173(2):634–646

    Article  MathSciNet  MATH  Google Scholar 

  37. Congbin W, Lin Y (1999) Minimizing risk models in Markov decision processes with policies depending on target values. J Math Anal Appl 231(1):47–67

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu H, Mannor S (2011) Probabilistic goal Markov decision processes. In: Proceedings of IJCAI, pp 2046–2052

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickael Randour.

Additional information

M. Randour is an F.R.S.-FNRS Postdoctoral Researcher, J.-F. Raskin is supported by ERC Starting Grant (279499: inVEST). Work partly supported by European project CASSTING (FP7-ICT-601148).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randour, M., Raskin, JF. & Sankur, O. Percentile queries in multi-dimensional Markov decision processes. Form Methods Syst Des 50, 207–248 (2017). https://doi.org/10.1007/s10703-016-0262-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10703-016-0262-7

Keywords

Navigation