Skip to main content

Advertisement

Log in

Strategy synthesis for multi-dimensional quantitative objectives

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Multi-dimensional mean-payoff and energy games provide the mathematical foundation for the quantitative study of reactive systems, and play a central role in the emerging quantitative theory of verification and synthesis. In this work, we study the strategy synthesis problem for games with such multi-dimensional objectives along with a parity condition, a canonical way to express \(\omega \)-regular conditions. While in general, the winning strategies in such games may require infinite memory, for synthesis the most relevant problem is the construction of a finite-memory winning strategy (if one exists). Our main contributions are as follows. First, we show a tight exponential bound (matching upper and lower bounds) on the memory required for finite-memory winning strategies in both multi-dimensional mean-payoff and energy games along with parity objectives. This significantly improves the triple exponential upper bound for multi energy games (without parity) that could be derived from results in literature for games on vector addition systems with states. Second, we present an optimal symbolic and incremental algorithm to compute a finite-memory winning strategy (if one exists) in such games. Finally, we give a complete characterization of when finite memory of strategies can be traded off for randomness. In particular, we show that for one-dimension mean-payoff parity games, randomized memoryless strategies are as powerful as their pure finite-memory counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that the symbolic algorithm can be applied to MEPGs and MMPPGs after removal of the parity condition by applying the construction of Lemma 4.

  2. The multi-dimensional setting gives rise to incomparable outcomes and the need to consider Pareto-optimality.

References

  • Acacia+. http://lit2.ulb.ac.be/acaciaplus/

  • Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets antichains. In: Proceedings of TACAS, LNCS 6015. Springer (2010)

  • Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)

    Article  MathSciNet  Google Scholar 

  • Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge, MA (2008)

    MATH  Google Scholar 

  • Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to safety games. ITA 36(3), 261–275 (2002)

    MATH  MathSciNet  Google Scholar 

  • Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Proceedings of CAV, LNCS 5643, pp. 140–156. Springer (2009)

  • Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In: Proceedings of FMCAD, pp. 85–92. IEEE (2009)

  • Bohy, A., Bruyère, V., Filiot, E., Raskin, J.-F.: Synthesis from LTL specifications with mean-payoff objectives. In: Proceedings of TACAS, LNCS 7795, pp. 169–184. Springer (2013)

  • Borosh, I., Treybig, B.: Bounds on positive integral solutions of linear diophantine equations. Proc. Am. Math. Soc. 55(2), 299–304 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Proceedings of FORMATS, LNCS 5215, pp. 33–47. Springer (2008)

  • Bouyer, P., Markey, N., Olschewski, J., Ummels, M.: Measuring permissiveness in parity games: mean-payoff parity games revisited. In: Proceedings of ATVA, LNCS 6996, pp. 135–149. Springer (2011)

  • Brázdil, T., Jancar, P., Kucera, A.: Reachability games on extended vector addition systems with states. In: Proceedings of ICALP, LNCS 6199, pp. 478–489. Springer (2010)

  • Cerný, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative synthesis for concurrent programs. In: Proceedings of CAV, LNCS 6806, pp. 243–259. Springer (2011)

  • Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Comput. Sci. 413(1), 21–35 (2012)

    Article  MATH  Google Scholar 

  • Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Proceedings of EMSOFT, LNCS 2855, pp. 117–133. Springer (2003)

  • Chatterjee, K., Doyen, L.: Energy parity games. In: Proceedings of ICALP, LNCS 6199, pp. 599–610. Springer (2010)

  • Chatterjee, K., Doyen, L.: Games and markov decision processes with mean-payoff parity and energy parity objectives. In: Proceedings of MEMICS, LNCS. Springer (2011)

  • Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log. 11(4), Art. no. 23 (2010). http://dl.acm.org/citation.cfm?id=1805953&dl=ACM&coll=DL&CFID=348120849&CFTOKEN=19768725

  • Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: Proceedings of FSTTCS, LIPIcs 8, pp. 505–516. Schloss Dagstuhl—LZI (2010)

  • Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: Proceedings of LICS, pp. 178–187. IEEE Computer Society (2005)

  • Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-dimensional quantitative objectives. In: Proceedings of CONCUR, LNCS 7454, pp. 115–131. Springer (2012)

  • Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)

  • de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Proceedings of EMSOFT, LNCS 2211, pp. 148–165. Springer (2001)

  • De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algorithm for checking universality of finite automata. In: Proceedings of CAV, LNCS 4144, pp. 17–30. Springer (2006)

  • Doyen, L., Raskin, J.-F.: Antichains algorithms for finite automata. In: Proceedings of TACAS, LNCS 6015, pp. 2–22. Springer (2010)

  • Doyen, L., Raskin, J.-F.: Games with imperfect information: theory and algorithms. In: Lectures in Game Theory for Computer Scientists, pp. 185–212 (2011)

  • Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8(2), 109–113 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: Proceedings of FOCS, pp. 328–337. IEEE (1988)

  • Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proceedings of FOCS, pp. 368–377. IEEE (1991)

  • Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted automata. In: Proceedings of ICTAC, LNCS 6916, pp. 95–115. Springer (2011)

  • Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, logics, and infinite games: a guide to current research. In: LNCS 2500. Springer (2002)

  • Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of STOC, pp. 60–65. ACM (1982)

  • Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. Inf. Comput. 173(1), 64–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975)

    Article  MATH  Google Scholar 

  • Martin, D.A.: The determinacy of Blackwell games. J. Symb. Logic 63(4), 1565–1581 (1998)

    Article  MATH  Google Scholar 

  • Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS, pp. 46–57. IEEE Computer Society (1977)

  • Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of POPL, pp. 179–190 (1989)

  • Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor. Comput. Sci. 6, 223–231 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes. SIAMbreak J. Control Optim. 25(1), 206–230 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Rosier, L.E., Yen, H.-C.: A multiparameter analysis of the boundedness problem for vector addition systems. J. Comput. Syst. Sci. 32(1), 105–135 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, Beyond Words, chapter 7, pp. 389–455. Springer, Berlin (1997)

  • Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of FOCS, pp. 327–338. IEEE Computer Society (1985)

  • Velner, Y., Rabinovich, A.: Church synthesis problem for noisy input. In: Proceedings of FOSSACS, LNCS 6604, pp. 275–289. Springer (2011)

  • Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158, 343–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Thanks to D. Sbabo for useful pointers, V. Bruyère for comments on a preliminary draft, and A. Bohy for fruitful discussions about the Acacia+ tool. We are grateful to the anonymous reviewers for their insightful comments. Krishnendu Chatterjee is supported by Austrian Science Fund (FWF) Grant No P 23499-N23, FWF NFN Grant No S11407 (RiSE), ERC Starting Grant (279307: Graph Games) and Microsoft faculty fellowship. Mickael Randour is supported by F.R.S.-FNRS. fellowship. Jean-François Raskin is supported by ERC Starting Grant (279499: inVEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickael Randour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, K., Randour, M. & Raskin, JF. Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica 51, 129–163 (2014). https://doi.org/10.1007/s00236-013-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-013-0182-6

Navigation