Skip to main content
Log in

Neutrino Oscillations: Entanglement, Energy-Momentum Conservation and QFT

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider several subtle aspects of the theory of neutrino oscillations which have been under discussion recently. We show that the S-matrix formalism of quantum field theory can adequately describe neutrino oscillations if correct physics conditions are imposed. This includes space-time localization of the neutrino production and detection processes. Space-time diagrams are introduced, which characterize this localization and illustrate the coherence issues of neutrino oscillations. We discuss two approaches to calculations of the transition amplitudes, which allow different physics interpretations: (i) using configuration-space wave packets for the involved particles, which leads to approximate conservation laws for their mean energies and momenta; (ii) calculating first a plane-wave amplitude of the process, which exhibits exact energy-momentum conservation, and then convoluting it with the momentum-space wave packets of the involved particles. We show that these two approaches are equivalent. Kinematic entanglement (which is invoked to ensure exact energy-momentum conservation in neutrino oscillations) and subsequent disentanglement of the neutrinos and recoiling states are in fact irrelevant when the wave packets are considered. We demonstrate that the contribution of the recoil particle to the oscillation phase is negligible provided that the coherence conditions for neutrino production and detection are satisfied. Unlike in the previous situation, the phases of both neutrinos from Z 0 decay are important, leading to a realization of the Einstein-Podolsky-Rosen paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmedov, E.K., Smirnov, A.Y.: Phys. At. Nucl. 72, 1363 (2009) (shortened variant). The complete version is arXiv:0905.1903 [hep-ph]

    Article  Google Scholar 

  2. Wu, J., Hutasoit, J.A., Boyanovsky, D., Holman, R.: arXiv:1002.2649 [hep-ph]

  3. Wu, J., Hutasoit, J.A., Boyanovsky, D., Holman, R.: arXiv:1005.3260 [hep-ph]

  4. Beuthe, M.: Phys. Rep. 375, 105 (2003). arXiv:hep-ph/0109119

    Article  ADS  MathSciNet  Google Scholar 

  5. Akhmedov, E.K., Kopp, J.: arXiv:1001.4815 [hep-ph]

  6. Grimus, W., Stockinger, P.: Phys. Rev. D 54, 3414 (1996). arXiv:hep-ph/9603430

    Article  ADS  Google Scholar 

  7. Giunti, C., Kim, C.W., Lee, J.A., Lee, U.W.: Phys. Rev. D 48, 4310 (1993). arXiv:hep-ph/9305276

    Article  ADS  Google Scholar 

  8. Goldman, J.T.: Mod. Phys. Lett. A 25, 479 (2010). arXiv:hep-ph/9604357

    Article  ADS  MATH  Google Scholar 

  9. Dolgov, A.D., Morozov, A.Y., Okun, L.B., Shchepkin, M.G.: Nucl. Phys. B 502, 3 (1997). arXiv:hep-ph/9703241

    Article  ADS  Google Scholar 

  10. Nauenberg, M.: Phys. Lett. B 447, 23 (1999). arXiv:hep-ph/9812441. Erratum-ibid. B 452, 434 (1999)

    Article  ADS  Google Scholar 

  11. Cohen, A.G., Glashow, S.L., Ligeti, Z.: arXiv:0810.4602 [hep-ph]

  12. Robertson, R.G.H.: arXiv:1004.1847v1 [hep-ph]

  13. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  14. Kayser, B.: Phys. Rev. D 24, 110 (1981)

    Article  ADS  Google Scholar 

  15. Rich, J.: Phys. Rev. D 48, 4318 (1993)

    Article  ADS  Google Scholar 

  16. Robertson, R.G.H.: arXiv:1004.1847v2 [hep-ph]

  17. Kayser, B., Kopp, J., Roberston, R.G.H., Vogel, P.: arXiv:1006.2372 [hep-ph]

  18. Smirnov, A.Y., Zatsepin, G.T.: Mod. Phys. Lett. A 7, 1272 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Akhmedov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmedov, E.K., Smirnov, A.Y. Neutrino Oscillations: Entanglement, Energy-Momentum Conservation and QFT. Found Phys 41, 1279–1306 (2011). https://doi.org/10.1007/s10701-011-9545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9545-4

Keywords

Navigation