Skip to main content
Log in

Isomerism and decoherence

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

In the present paper we address the problem of optical isomerism embodied in the socalled “Hund’s paradox”, which points to the difficulty to account for chirality by means of quantum mechanics. In particular, we explain the answer to the problem proposed by the theory of decoherence. The purpose of this article is to challenge this answer on the basis of a conceptual analysis of the phenomenon of decoherence, that reveals the limitations of the theory of decoherence to solve the difficulties posed by optical isomerism and, in general, by quantum measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Although, strictly speaking, in quantum mechanics there is no distance between particles because in general they do not possess a definite position, the difference \( \left| {\bar{r}_{i} - \bar{r}_{j} } \right| \) is usually called “distance between particles”, where \( \bar{r}_{i} \) and \( \bar{r}_{j} \) are the coordinates of each electron in the position representation.

  2. The theory of decoherence works with the representation of the quantum state in the von Neumann–Liouville space. The ket \( \left| \upvarphi \right\rangle \) is represented in this space by an operator \( \hat{\uprho } = \left| \upvarphi \right\rangle \left\langle \upvarphi \right| \). The advantage of this space is that more general states can be represented in it (see Landau and Lifshitz 1958).

  3. The quaternionic formulation of quantum mechanics is a formalism based on quaternion fields instead of complex fields (see Adler 1995).

References

  • Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    Google Scholar 

  • Adler, S.: Why decoherence has not solved the measurement problem: a response to P. W. Anderson. Stud. Hist. Philos. Modern Phys. 34, 135–142 (2003)

    Article  Google Scholar 

  • Bacciagaluppi, G.: The role of decoherence in quantum mechanics. In: Zalta, E. N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2012 Edition) (2012). http://plato.stanford.edu/archives/win2012/entries/qm-decoherence/

  • Bader, R.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1994)

    Google Scholar 

  • Ballentine, L.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Book  Google Scholar 

  • Berlin, Y.A., Burin, A.L., Goldanskii, V.V.: The Hund paradox and stabilization of molecular chiral states. Zeitschrift für Physik D 37, 333–339 (1996)

    Article  Google Scholar 

  • Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • d’Espagnat, B.: An elementary note about mixtures. In: De-Shalit, A., Feshbach, H., van Hove, L. (eds.) Preludes in Theoretical Physics. North-Holland, Amsterdam (1966)

    Google Scholar 

  • d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Benjamin, Reading MA (1976)

    Google Scholar 

  • Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714–733 (1929)

    Article  Google Scholar 

  • Fortin, S., Lombardi, O.: Partial traces in decoherence and in interpretation: What do reduced states refer to? Found. Phys. 44, 426–446 (2014)

    Article  Google Scholar 

  • Harris, R.A., Stodolsky, L.: Time dependence of optical activity. J. Chem. Phys. 74, 2145–2155 (1981)

    Article  Google Scholar 

  • Healey, R.A.: Dissipating the quantum measurement problem. Topoi 14, 55–65 (1995)

    Article  Google Scholar 

  • Heisenberg, W. (1927): Über den anschaulichen Inhalt der quantentheoretischer Kinematic und Mechanik. Zeitschrift für Physik, 43, 172–198. English version: (1983). The physical content of quantum kinematics and mechanics. In: Wheeler, J. A., Zurek, W. H. (eds.) Quantum Theory and Measurement. Princeton University Press, Princeton

  • Hendry, R.F.: The physicists, the chemists, and the pragmatics of explanation. Philos. Sci. 71, 1048–1059 (2004)

    Article  Google Scholar 

  • Hendry, R.F.: Two conceptions of the chemical bond. Philos. Sci. 75, 909–920 (2008)

    Article  Google Scholar 

  • Hendry, R.F.: Ontological reduction and molecular structure. Stud. Hist. Philos. Modern Phys. 41, 183–191 (2010)

    Article  Google Scholar 

  • Hettema, H.: Explanation and theory foundation in quantum chemistry. Found. Chem. 11, 145–174 (2009)

    Article  Google Scholar 

  • Hettema, H.: Reducing Chemistry to Physics: Limits, Models, Consecuences. University of Groningen, Groningen (2012)

    Google Scholar 

  • Hund, F.: Zur Deutung der Molekelspektren. III. Zeitschrift für Physik 43, 805–826 (1927)

    Article  Google Scholar 

  • Joos, E.: Elements of environmental decoherence. In: Blanchard, P., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I.-O. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol. 538. Springer, Heidelberg-Berlin (2000)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford (1958)

    Google Scholar 

  • Leggett, A.J.: Reflections on the quantum measurement paradox. In: Hiley, B.J., Peat, F.D. (eds.) Quantum Implications. Routledge and Kegan Paul, London (1987)

    Google Scholar 

  • Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Modern Phys. 39, 380–443 (2008)

    Article  Google Scholar 

  • Lombardi, O., Castagnino, M.: Matters are not so clear on the physical side. Found. Chem. 12, 159–166 (2010)

    Article  Google Scholar 

  • Lombardi, O., Fortin, S., Castagnino, M., Ardenghi, J.S.: Compatibility between environment-induced decoherence and the modal-Hamiltonian interpretation of quantum mechanics. Philos. Sci. 78, 1024–1036 (2011)

    Article  Google Scholar 

  • Masillo, F., Scolarici, G., Sozzo, S.: Proper versus improper mixtures: towards a quaternionic quantum mechanics. Theor. Math. Phys. 160, 1006–1013 (2009)

    Article  Google Scholar 

  • Nagel, E.: The Structure of Science. Harcourt, Brace & World, New York (1961)

    Google Scholar 

  • Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Fundamentals of Quantum Information. Lecture Notes in Physics, Vol. 587. Springer, Heidelberg-Berlin (2002)

    Google Scholar 

  • Scerri, E.R.: Editorial 37. Found. Chem. 13, 1–7 (2011)

    Article  Google Scholar 

  • Scerri, E.R.: Top–down causation regarding the chemistry-physics interface: a sceptical view. Interface Focus 2, 20–25 (2012)

    Article  Google Scholar 

  • Scerri, E.R.: Philosophy of chemistry: where has it been and where is it going. In: Llored, J.-P. (ed.) The Philosophy of Chemistry: Practices, Methodologies, and Concepts. Cambridge Scholars Publishing, Newcastle (2013)

    Google Scholar 

  • Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  • Sutcliffe, B.T., Wolley, R.G.: A comment on Editorial 37. Found. Chem. 13, 93–95 (2011)

    Article  Google Scholar 

  • Sutcliffe, B.T., Wolley, R.G.: Atoms and molecules in classical chemistry and quantum mechanics. In: Hendry, R.F., Woody, A. (eds.) Handbook of Philosophy of Science. Vol. 6, Philosophy of Chemistry. Elsevier, Oxford (2012)

    Google Scholar 

  • Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover, Mineola NY (1996)

    Google Scholar 

  • Wolley, R.G.: Quantum theory and molecular structure. Adv. Phys. 25, 27–52 (1976)

    Article  Google Scholar 

  • Wolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)

    Article  Google Scholar 

  • Wooley, R.G.: Natural optical activity and the molecular hypothesis. Struct. Bond. 52, 1–35 (1982)

    Article  Google Scholar 

  • Wolley, R.G.: Is there a quantum definition of a molecule? J. Math. Chem. 23, 3–12 (1998)

    Article  Google Scholar 

  • Zurek, W.H.: Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)

    Article  Google Scholar 

  • Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)

    Article  Google Scholar 

  • Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)

    Article  Google Scholar 

  • Zurek, W.H.: Preferred states, predictability, classicality and the environment-induced decoherence. Prog. Theor. Phys. 89, 281–312 (1993)

    Article  Google Scholar 

  • Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–776 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Eric Scerri for our discussions about the problem of isomerism. This publication was made possible through the support of grant 57919 from the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Additional information

This work is fully collaborative: the order of the names does not mean priority.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortin, S., Lombardi, O. & Martínez González, J.C. Isomerism and decoherence. Found Chem 18, 225–240 (2016). https://doi.org/10.1007/s10698-016-9251-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-016-9251-6

Keywords

Navigation