Foundations of Chemistry

, Volume 18, Issue 3, pp 225–240 | Cite as

Isomerism and decoherence

  • Sebastian Fortin
  • Olimpia Lombardi
  • Juan Camilo Martínez González
Article

Abstract

In the present paper we address the problem of optical isomerism embodied in the socalled “Hund’s paradox”, which points to the difficulty to account for chirality by means of quantum mechanics. In particular, we explain the answer to the problem proposed by the theory of decoherence. The purpose of this article is to challenge this answer on the basis of a conceptual analysis of the phenomenon of decoherence, that reveals the limitations of the theory of decoherence to solve the difficulties posed by optical isomerism and, in general, by quantum measurement.

Keywords

Isomerism Chirality Hund’s paradox Quantum mechanics Decoherence 

References

  1. Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)Google Scholar
  2. Adler, S.: Why decoherence has not solved the measurement problem: a response to P. W. Anderson. Stud. Hist. Philos. Modern Phys. 34, 135–142 (2003)CrossRefGoogle Scholar
  3. Bacciagaluppi, G.: The role of decoherence in quantum mechanics. In: Zalta, E. N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2012 Edition) (2012). http://plato.stanford.edu/archives/win2012/entries/qm-decoherence/
  4. Bader, R.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1994)Google Scholar
  5. Ballentine, L.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)CrossRefGoogle Scholar
  6. Berlin, Y.A., Burin, A.L., Goldanskii, V.V.: The Hund paradox and stabilization of molecular chiral states. Zeitschrift für Physik D 37, 333–339 (1996)CrossRefGoogle Scholar
  7. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)Google Scholar
  8. d’Espagnat, B.: An elementary note about mixtures. In: De-Shalit, A., Feshbach, H., van Hove, L. (eds.) Preludes in Theoretical Physics. North-Holland, Amsterdam (1966)Google Scholar
  9. d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Benjamin, Reading MA (1976)Google Scholar
  10. Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714–733 (1929)CrossRefGoogle Scholar
  11. Fortin, S., Lombardi, O.: Partial traces in decoherence and in interpretation: What do reduced states refer to? Found. Phys. 44, 426–446 (2014)CrossRefGoogle Scholar
  12. Harris, R.A., Stodolsky, L.: Time dependence of optical activity. J. Chem. Phys. 74, 2145–2155 (1981)CrossRefGoogle Scholar
  13. Healey, R.A.: Dissipating the quantum measurement problem. Topoi 14, 55–65 (1995)CrossRefGoogle Scholar
  14. Heisenberg, W. (1927): Über den anschaulichen Inhalt der quantentheoretischer Kinematic und Mechanik. Zeitschrift für Physik, 43, 172–198. English version: (1983). The physical content of quantum kinematics and mechanics. In: Wheeler, J. A., Zurek, W. H. (eds.) Quantum Theory and Measurement. Princeton University Press, PrincetonGoogle Scholar
  15. Hendry, R.F.: The physicists, the chemists, and the pragmatics of explanation. Philos. Sci. 71, 1048–1059 (2004)CrossRefGoogle Scholar
  16. Hendry, R.F.: Two conceptions of the chemical bond. Philos. Sci. 75, 909–920 (2008)CrossRefGoogle Scholar
  17. Hendry, R.F.: Ontological reduction and molecular structure. Stud. Hist. Philos. Modern Phys. 41, 183–191 (2010)CrossRefGoogle Scholar
  18. Hettema, H.: Explanation and theory foundation in quantum chemistry. Found. Chem. 11, 145–174 (2009)CrossRefGoogle Scholar
  19. Hettema, H.: Reducing Chemistry to Physics: Limits, Models, Consecuences. University of Groningen, Groningen (2012)Google Scholar
  20. Hund, F.: Zur Deutung der Molekelspektren. III. Zeitschrift für Physik 43, 805–826 (1927)CrossRefGoogle Scholar
  21. Joos, E.: Elements of environmental decoherence. In: Blanchard, P., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I.-O. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol. 538. Springer, Heidelberg-Berlin (2000)Google Scholar
  22. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford (1958)Google Scholar
  23. Leggett, A.J.: Reflections on the quantum measurement paradox. In: Hiley, B.J., Peat, F.D. (eds.) Quantum Implications. Routledge and Kegan Paul, London (1987)Google Scholar
  24. Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Modern Phys. 39, 380–443 (2008)CrossRefGoogle Scholar
  25. Lombardi, O., Castagnino, M.: Matters are not so clear on the physical side. Found. Chem. 12, 159–166 (2010)CrossRefGoogle Scholar
  26. Lombardi, O., Fortin, S., Castagnino, M., Ardenghi, J.S.: Compatibility between environment-induced decoherence and the modal-Hamiltonian interpretation of quantum mechanics. Philos. Sci. 78, 1024–1036 (2011)CrossRefGoogle Scholar
  27. Masillo, F., Scolarici, G., Sozzo, S.: Proper versus improper mixtures: towards a quaternionic quantum mechanics. Theor. Math. Phys. 160, 1006–1013 (2009)CrossRefGoogle Scholar
  28. Nagel, E.: The Structure of Science. Harcourt, Brace & World, New York (1961)Google Scholar
  29. Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Fundamentals of Quantum Information. Lecture Notes in Physics, Vol. 587. Springer, Heidelberg-Berlin (2002)Google Scholar
  30. Scerri, E.R.: Editorial 37. Found. Chem. 13, 1–7 (2011)CrossRefGoogle Scholar
  31. Scerri, E.R.: Top–down causation regarding the chemistry-physics interface: a sceptical view. Interface Focus 2, 20–25 (2012)CrossRefGoogle Scholar
  32. Scerri, E.R.: Philosophy of chemistry: where has it been and where is it going. In: Llored, J.-P. (ed.) The Philosophy of Chemistry: Practices, Methodologies, and Concepts. Cambridge Scholars Publishing, Newcastle (2013)Google Scholar
  33. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)Google Scholar
  34. Sutcliffe, B.T., Wolley, R.G.: A comment on Editorial 37. Found. Chem. 13, 93–95 (2011)CrossRefGoogle Scholar
  35. Sutcliffe, B.T., Wolley, R.G.: Atoms and molecules in classical chemistry and quantum mechanics. In: Hendry, R.F., Woody, A. (eds.) Handbook of Philosophy of Science. Vol. 6, Philosophy of Chemistry. Elsevier, Oxford (2012)Google Scholar
  36. Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover, Mineola NY (1996)Google Scholar
  37. Wolley, R.G.: Quantum theory and molecular structure. Adv. Phys. 25, 27–52 (1976)CrossRefGoogle Scholar
  38. Wolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)CrossRefGoogle Scholar
  39. Wooley, R.G.: Natural optical activity and the molecular hypothesis. Struct. Bond. 52, 1–35 (1982)CrossRefGoogle Scholar
  40. Wolley, R.G.: Is there a quantum definition of a molecule? J. Math. Chem. 23, 3–12 (1998)CrossRefGoogle Scholar
  41. Zurek, W.H.: Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)CrossRefGoogle Scholar
  42. Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)CrossRefGoogle Scholar
  43. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)CrossRefGoogle Scholar
  44. Zurek, W.H.: Preferred states, predictability, classicality and the environment-induced decoherence. Prog. Theor. Phys. 89, 281–312 (1993)CrossRefGoogle Scholar
  45. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–776 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sebastian Fortin
    • 1
  • Olimpia Lombardi
    • 2
  • Juan Camilo Martínez González
    • 1
  1. 1.CONICET –Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICET –Universidad de Buenos Aires-Theiss ResearchLa JollaUSA

Personalised recommendations