Skip to main content
Log in

Effects of different salinities on growth performance, survival, digestive enzyme activity, immune response, and muscle fatty acid composition in juvenile American shad (Alosa sapidissima)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effects of salinity on survival, growth, special activity of digestive enzymes, nonspecific immune response, and muscle fatty acid composition were evaluated in the American shad (Alosa sapidissima). Juveniles of 35 days after hatching were reared at 0 (control), 7, 14, 21, and 28 ppt for 60 days. At the end of the experiment, juvenile American shad presented higher survival and specific growth rate (SGR) in salinity group (7, 14, and 21 ppt) than control group (P < 0.05). The special activity of trypsin and chymotrypsin was highest in fish reared at 21 ppt, while the highest lipase special activity was obtained in control group (P < 0.05). The special activity of alkaline phosphatase (ALP), lysozyme (LZM), superoxide dismutase (SOD), and catalase (CAT) showed significant increases in salinity group (14 and 21 ppt) compared to control group (P < 0.05). Lower muscle ash contents were detected in salinity group (14, 21, and 28 ppt) than control group (P < 0.05), while the contents of crude lipid and crude protein were significantly higher than control group (P < 0.05). The level of monounsaturated fatty acids (MUFA) exhibited a decreasing trend, while an increased level of polyunsaturated fatty acids (PUFA) was detected with the increase of salinity. Among the PUFA, the content of n-3 fatty acids in muscle tissue was found to be increasing with the increasing salinity, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results indicate that appropriate increase in salinity was reasonable and beneficial for juvenile American shad culture after a comprehensive consideration, especially salinity range from 14 to 21 ppt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Arjona FJ, Vargas-Chacoff L, Ruiz-Jarabo I, Del Río MPMD, Mancera JM (2007) Osmoregulatory response of Senegalese sole (Solea senegalensis) to changes in environmental salinity. Comp Biochem Physiol A Mol Integr Physiol 148:413–421

    Article  PubMed  Google Scholar 

  • Arjona FJ, Vargas-Chacoff L, Ruiz-Jarabo I, Gonçalves O, Páscoa I, Del Río MPMD, Mancera JM (2009) Tertiary stress responses in Senegalese sole (Solea senegalensis Kaup, 1858) to osmotic challenge: implications for osmoregulation, energy metabolism and growth. Aquaculture 287:419–426

    Article  Google Scholar 

  • Árnason T, Magnadóttir B, Björnsson B, Steinarsson A, Björnsson BT (2013) Effects of salinity and temperature on growth, plasma ions, cortisol and immune parameters of juvenile Atlantic cod (Gadus morhua). Aquaculture 380:70–79

    Article  Google Scholar 

  • AOAC (Association of Official Analytical Chemist) (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemist, Arlington

  • Baragi V, Lovell RT (1986) Digestive enzyme activities in striped bass from first feeding through larva development. Trans Am Fish Soc 115:478–484

    Article  CAS  Google Scholar 

  • Barman UK, Jana SN, Garg SK, Bhatnagar A, Arasu A (2005) Effect of inland water salinity on growth, feed conversion efficiency and intestinal enzyme activity in growing grey mullet, Mugil cephalus (Linn.): field and laboratory studies. Aquac Int 13:241–256

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, alpha and beta. Methods in enzymology I 1:149–158

    Article  CAS  Google Scholar 

  • Bessey OA, Lowky OH, Brock MJ (1946) A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J Biol Chem 164:321–329

    CAS  PubMed  Google Scholar 

  • Boeuf G, Payan P (2001) How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 130:411–423

    CAS  Google Scholar 

  • Bolasina S, Pérez A, Yamashita Y (2006) Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture 252:503–515

    Article  CAS  Google Scholar 

  • Bolasina SN, Tagawa M, Yamashita Y (2007) Changes on cortisol level and digestive enzyme activity in juveniles of Japanese flounder, Paralichthys olivaceus, exposed to different salinity regimes. Aquaculture 266:255–261

    Article  CAS  Google Scholar 

  • Carscadden JE, Leggett WC (1975) Life history variations in populations of American shad, Alosa sapidissima (Wilson), spawning in tributaries of the St John River, New Brunswick. J Fish Biol 7:595–609

    Article  Google Scholar 

  • Chittenden ME (1973) Salinity tolerance of young American Shad, Alosa sapidissima. Chesap Sci 14:207–210

    Article  Google Scholar 

  • Czesny S, Kolkovski S, Dabrowski K, Culver D (1999) Growth, survival, and quality of juvenile walleye Stizostedion vitreum as influenced by n− 3 HUFA enriched Artemia nauplii. Aquaculture 178:103–115

    Article  CAS  Google Scholar 

  • Da Silva Rocha AJ, Gomes V, Van Ngan P, Rocha MJDA, Furia RR (2005) Metabolic demand and growth of juveniles of Centropomus parallelus as function of salinity. J Exp Mar Biol Ecol 316:157–165

    Article  Google Scholar 

  • Del Mar EG, Largman C, Brodrick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320

    Article  CAS  Google Scholar 

  • Desvilettes C, Bourdier G, Breton JC (1994) Lipid class and fatty acid composition of planktivorous larval pike (Esox lucius) living in a natural pond. Aquat Living Resour 7:67–77

    Article  Google Scholar 

  • Divakaran S, Kim BG, Ostrowski AC (1999) Digestive enzymes present in Pacific threadfin Polydactylus sexfilis (Bloch & Schneider 1801) and bluefin trevally Caranx melampygus (Cuvier 1833). Aquac Res 30:781–787

    Article  Google Scholar 

  • Ellis AE (1990) Lysozyme assays. Techniques in Fish Immunology 1:101–103

    Google Scholar 

  • Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  • Fast MD, Sims DE, Burka JF, Mustafa A, Ross NW (2002) Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comp Biochem Physiol A Mol Integr Physiol 132:645–657

    Article  CAS  PubMed  Google Scholar 

  • Furne M, Hidalgo MC, Lopez A, Garcia-Gallego M, Morales AE, Domezain A, Domezaine J, Sanz A (2005) z. Aquaculture 250:391–398

    Article  CAS  Google Scholar 

  • Gheisvandi N, Hajimoradloo A, Ghorbani R, Hoseinifar SH (2015) The effects of gradual or abrupt changes in salinity on digestive enzymes activity of Caspian kutum, Rutilus kutum (Kamensky, 1901) larvae. J Appl Ichthyol 31:1107–1112

    Article  CAS  Google Scholar 

  • Gjellesvik DR, Lombardo D, Walther BT (1992) Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1124:123–134

    Article  CAS  Google Scholar 

  • Grinde B, Jollès J, Jollès P (1988) Purification and characterization of two lysozymes from rainbow trout (Salmo gairdneri). Eur J Biochem 173:269–273

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Wang W, Lu J, Dai X, Zhou J (2004) Salinity effects on growth and biochemical composition of Penaeus vannamei. Marine Sciences 28:20–25

    CAS  Google Scholar 

  • Hunt AÖ, Özkan F, Engin K, Tekelioğlu N (2011) The effects of freshwater rearing on the whole body and muscle tissue fatty acid profile of the European sea bass (Dicentrarchus labrax). Aquac Int 19:51–61

    Article  CAS  Google Scholar 

  • Iger Y, Abraham M (1997) Rodlet cells in the epidermis of fish exposed to stressors. Tissue Cell 29:431–438

    Article  CAS  PubMed  Google Scholar 

  • Jana SN, Garg SK, Patra BC (2006) Effect of inland water salinity on growth performance and nutritional physiology in growing milkfish, Chanos chanos (Forsskal): field and laboratory studies. J Appl Ichthyol 22:25–34

    Article  CAS  Google Scholar 

  • Khériji S, El Cafsi M, Masmoudi W, Castell JD, Romdhane MS (2003) Salinity and temperature effects on the lipid composition of mullet sea fry (Mugil cephalus, Linne, 1758). Aquac Int 11:571–582

    Article  Google Scholar 

  • Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture 200:181–201

    Article  CAS  Google Scholar 

  • Krogdahl A, Sundby A, Olli JJ (2004) Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity and dietary starch level. Aquaculture 229:335–360

    Article  CAS  Google Scholar 

  • Leach SD, Houde ED (1999) Effects of environmental factors on survival, growth, and production of American shad larvae. J Fish Biol 54:767–786

    Article  Google Scholar 

  • Leggett WC, Whitney RR (1972) Water temperature and the migrations of American shad. Fish Bull 70:659–670

    Google Scholar 

  • Lemieux H, Blier P, Dutil J (1999) Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua). Fish Physiol Biochem 20:293–303

    Article  CAS  Google Scholar 

  • Li E, Chen L, Zeng C, Chen X, Yu N, Lai Q, Qin JG (2007) Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture 265:385–390

    Article  CAS  Google Scholar 

  • Limburg KE, Ross RM (1995) Growth and mortality rates of larval American shad, Alosa sapidissima, at different salinities. Estuar Coasts 18:335–340

    Article  Google Scholar 

  • Martinez-Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15:75–88

    Article  Google Scholar 

  • Martinez-Palacios CA, Morte JC, Tello-Ballinas JA, Toledo-Cuevas M, Ross LG (2004) The effects of saline environments on survival and growth of eggs and larvae of Chirostoma estor estor Jordan 1880 (Pisces: Atherinidae). Aquaculture 238:509–522

    Article  Google Scholar 

  • Moccord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein. J Biol Chem 244:6049–6055

    Google Scholar 

  • Moutou KA, Panagiotaki P, Mamuris Z (2004) Effects of salinity on digestive protease activity in the euryhaline sparid Sparus aurata L.: a preliminary study. Aquac Res 35:912–914

    Article  CAS  Google Scholar 

  • Nikolopoulou D, Moutou KA, Fountoulaki E, Venou B, Adamidou S, Alexis MN (2011) Patterns of gastric evacuation, digesta characteristics and pH changes along the gastrointestinal tract of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Comp Biochem Physiol A Mol Integr Physiol 158:406–414

    Article  CAS  PubMed  Google Scholar 

  • O’Leary JA, Kynard B (1986) Behavior, length, and sex ratio of seaward-migrating juvenile American shad and blueback herring in the Connecticut River. Trans Am Fish Soc 115:529–536

    Article  Google Scholar 

  • Ota T, Takagi T (1977) A comparative study on the lipid class composition and the fatty acid composition of sweet smelt, Plecoglossus altivelis, from marine and fresh-water habitat. Bulletin of the Faculty of Fisheries Hokkaido University 28:47–56

    CAS  Google Scholar 

  • Özogul Y, Özogul F, Alagoz S (2007) Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: a comparative study. Food Chem 103:217–223

    Article  Google Scholar 

  • Partridge GJ, Jenkins GI (2002) The effect of salinity on growth and survival of juvenile black bream (Acanthopagrus butcheri). Aquaculture 210:219–230

    Article  Google Scholar 

  • Psochiou E, Mamuris Z, Panagiotaki P, Kouretas D, Moutou KA (2007) The response of digestive proteases to abrupt salinity decrease in the euryhaline sparid Sparus aurata L. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology 147:156–163

    Article  Google Scholar 

  • Radi AAR, Matkovics B (1988) Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissues. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 90:69–72

    Article  CAS  Google Scholar 

  • Ross NW, Firth KJ, Wang A, Burka JF, Johnson SC (2000) Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis Aquat Org 41:43–51

    Article  CAS  PubMed  Google Scholar 

  • Rungruangsak-Torrissen K, Moss R, Andresen LH, Berg A, Waagbø R (2006) Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 32:7–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas Leitón EA, Rodriguez Rúa A, Asensio E, Infante C, Manchado M, Fernández Díaz C, Cañavate JP (2012) Effect of salinity on egg hatching, yolk sac absorption and larval rearing of Senegalese sole (Solea senegalensis Kaup 1858). Rev Aquac 4:49–58

    Article  Google Scholar 

  • Sarath G, De La Motte RS, Wagner FW (1989) Protease assay methods. Proteolytic enzymes: a practical approach, 3rd. Oxford University Press, Oxford

  • Sargent J, Bell G, McEvoy L, Tocher D, Estevez A (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191–199

    Article  CAS  Google Scholar 

  • Sarker MA, Yamamoto Y, Haga Y, Sarker MSA, Miwa M, Yoshizaki G, Satoh S (2011) Influences of low salinity and dietary fatty acids on fatty acid composition and fatty acid desaturase and elongase expression in red sea bream Pagrus major. Fish Sci 77:385–396

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, MacKinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology 148:256–263

    Article  Google Scholar 

  • Sutthinon P, Thongprajukaew K, Saekhow S, Ketmanee R (2015) Juvenile hybrid grouper (Epinephelus coioides× E. lanceolatus) are euryhaline and can grow in a wide range of salinities. Aquac Int 23:671–682

    Article  CAS  Google Scholar 

  • Toledo JD, Caberoy NB, Quinitio GF, Choresca CH, Nakagawa H (2002) Effects of salinity, aeration and light intensity on oil globule absorption, feeding incidence, growth and survival of early-stage grouper Epinephelus coioides larvae. Fish Sci 68:478–483

    Article  CAS  Google Scholar 

  • Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short-and long-term exposure to Cu 2+ and Zn 2+. Chemosphere 62:538–544

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki MY, Sugai JK, Maciel JC, Francisco CJ, Cerqueira VR (2007) Survival, growth and digestive enzyme activity of juveniles of the fat snook (Centropomus parallelus) reared at different salinities. Aquaculture 271:319–325

    Article  CAS  Google Scholar 

  • Ueberschär B (1988) Determination of the nutritional condition of individual marine fish larvae by analysing their proteolytic enzyme activities with a highly sensitive fluorescence technique. Meeresforschung-Reports on Marine Research 32:144–154

    Google Scholar 

  • Vargas-Chacoff L, Calvo Á, Ruiz Jarabo I, Villarroel F, Muñoz JL, Tinoco AB, Cárdenas S, Mancera JM (2011) Growth performance, osmoregulatory and metabolic modifications in red porgy fry, Pagrus pagrus, under different environmental salinities and stocking densities. Aquac Res 42:1269–1278

    Article  CAS  Google Scholar 

  • Vargas-Chacoff L, Saavedra E, Oyarzún R, Martínez-Montaño E, Pontigo JP, Yáñez A, Ruiz-Jarabo I, Mancera JM, Ortiz E, Bertrán C (2015) Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities. Fish Physiol Biochem 41:1369–1381

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Aritaki M, Tanaka M (2004) Effects of low-salinity on the growth and development of spotted halibut Verasper variegatus in the larva-juvenile transformation period with reference to pituitary prolactin and gill chloride cells responses. J Exp Mar Biol Ecol 308:113–126

    Article  CAS  Google Scholar 

  • Walburg CH, Nichols PR (1967) Biology and management of the American shad and status of the fisheries, Atlantic coast of the United States, 1960. United States Fish and Wildlife Service Special Scientific Report- Fisheries 500:1–105

    Google Scholar 

  • Wang XJ, Zhang XM, Li WT (2005) Effects of salinity on the non-specific immuno-enzymetic activity of Sebastes schlegeli. Marine Fisheries Research 26:17–21

    Google Scholar 

  • Winston GW, Giulio RTD (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–161

    Article  CAS  Google Scholar 

  • Woo NYS, Kelly SP (1995) Effects of salinity and nutritional status on growth and metabolism of Spams sarba in a closed seawater system. Aquaculture 135:229–238

    Article  Google Scholar 

  • Xu J, Yan B, Teng Y, Lou G, Lu Z (2010) Analysis of nutrient composition and fatty acid profiles of Japanese sea bass Lateolabrax japonicus (Cuvier) reared in seawater and freshwater. J Food Compos Anal 23:401–405

    Article  CAS  Google Scholar 

  • Zhao W, Liang M, Liu Q, Yin X, Wei J (2014) The effect of yeast polysaccharide (YSP) on the immune function of Apostichopus japonicus Selenka under salinity stress. Aquac Int 22:1753–1766

    Article  CAS  Google Scholar 

  • Zydlewski J, McCormick SD (1997) The ontogeny of salinity tolerance in the American shad, Alosa sapidissima. Can J Fish Aquat Sci 54:182–189

    Article  CAS  Google Scholar 

  • Zydlewski J, McCormick SD, Kunkel JG (2003) Late migration and seawater entry is physiologically disadvantageous for American shad juveniles. J Fish Biol 63:1521–1537

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Province Technology Infrastructure Construction Project (BM201312), Qingdao postdoctoral application research project (Q51201611), and State Level Commonweal Project of Research Institutes (20603022015005). The authors thank the Jiangsu Zhongyang Group to provide the larvae used in the present study, and thank Yellow Sea Fisheries Research Institute for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZF., Gao, XQ., Yu, JX. et al. Effects of different salinities on growth performance, survival, digestive enzyme activity, immune response, and muscle fatty acid composition in juvenile American shad (Alosa sapidissima). Fish Physiol Biochem 43, 761–773 (2017). https://doi.org/10.1007/s10695-016-0330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0330-3

Keywords

Navigation