Skip to main content
Log in

Kinetic Analysis, Solid Residues and Volatile Products of Pyrolyzing Nomex Insulation Paper in Nitrogen and Air Atmosphere

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

This paper studies the pyrolysis mechanisms of Nomex insulation paper in nitrogen and air atmospheres. The Nomex insulation paper is composed of 93% poly (m-phenylene isophthalamide) (PMIA) fibers and 7% inorganic substances based on elemental analysis. Using the thermogravimetry, it is found that the pyrolysis behaviors in nitrogen and air are similar below 770 K, with large discrepancies identified in the temperature range of 770–1073 K. The peak mass loss rate in air is 9 times higher than that in nitrogen. The kinetic analysis shows that the average activation energy (\(E\)) in air is lower than that in nitrogen by 32% when the temperature is higher than 770 K, indicating a lower thermal stability. The PMIA fibers are found decomposing more seriously in air using SEM. Below 770 K, the functional groups of two atmospheres are mainly produced by the breakage of amide bonds and formation of aromatic nitrile. Unlike nitrogen, the organic substances in the solid residue are mostly oxidized at 1073 K in air. Consequently, the maximum productions of H2O, CO2 and CO in air are nearly 5 times higher than those of nitrogen, and the HCN generated during pyrolysis is further oxidized to NOx in air. Combining with the results of Py-GC/MS, it is inferred that the small molecules generated by the degradation of PMIA molecular chains, especially the benzene rings, will experience oxidization reactions in air atmosphere, with large amounts of H2O, CO2, CO and NOx produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Trigo-López M, Miguel-Ortega Á, Vallejos S et al (2015) Intrinsically colored wholly aromatic polyamides (aramids). Dyes Pigm. https://doi.org/10.1016/j.dyepig.2015.06.027

    Article  Google Scholar 

  2. Li L, Song J, Wang Z et al (2020) Investigation on space charge properties of Nomex insulation paper in the mining dry type transformer during hygrothermal ageing. IET Sci Meas Technol 14(5):576–584. https://doi.org/10.1049/iet-smt.2019.0215

    Article  Google Scholar 

  3. Brown, J R,Ennis, B C. (1977). Thermal Analysis of Nome® and Kevlar® Fibers Textile Research Journal 4762: 66.

  4. Perepelkin KE, Andreeva IV, Pakshver EA et al (2003) Thermal characteristics of para-aramid fibres. Fibre Chem 35(4):265–269. https://doi.org/10.1023/b:fich.0000003476.55891.26

    Article  Google Scholar 

  5. Li N, Zhang X, Yu J et al (2019) Kinetic study of copolymerized PMIA with ether moiety under air pyrolysis. J Therm Anal Calorim 140(1):283–293. https://doi.org/10.1007/s10973-019-08809-1

    Article  Google Scholar 

  6. Zhang C, Jiang Y, Sun J et al (2020) Investigation of the influence of supercritical carbon dioxide treatment on meta-aramid fiber: Thermal decomposition behavior and kinetics. J CO2 Utilization 37:85–96. https://doi.org/10.1016/j.jcou.2019.10.007

    Article  Google Scholar 

  7. Villar-Rodil S, Paredes JI, Martínez-Alonso A et al (2001) Atomic force microscopy and infrared spectroscopy studies of the thermal degradation of nomex aramid fibers. Chem Mater 13(11):4297–4304. https://doi.org/10.1021/cm001219f

    Article  Google Scholar 

  8. Villar-Rodil S, Martìnez-Alonso, A, Tascón, J M D. (2001) Studies on pyrolysis of Nomex polyaramid fibers. J Analyt Appl Pyrolysis 58:59105–59115. https://doi.org/10.1016/s0165-2370(00)00124-8

    Article  Google Scholar 

  9. Sun N, Liang Y, Xu Z et al (2013) The thermal degradation behavior of meta- and para- hetero-amide fibers by TGA-FTIR. J Polym Eng 33(4):337–344. https://doi.org/10.1515/polyeng-2012-0028

    Article  Google Scholar 

  10. Brown JR, Power AJ (1982) Thermal degradation of aramids—Part II: Pyrolysis/gas chromatography/mass spectrometry of some model compounds of poly(1,3-phenylene isophthalamide) and poly(1,4-phenylene terephthalamide). Polym Degrad Stab 4(6):479–489. https://doi.org/10.1016/0141-3910(82)90018-0

    Article  Google Scholar 

  11. Brown JR, Power AJ (1982) Thermal degradation of aramids: Part I—Pyrolysis/gas chromatography/mass spectrometry of poly(1,3-phenylene isophthalamide) and poly(1,4-phenylene terephthalamide). Polym Degrad Stab 4(5):379–392. https://doi.org/10.1016/0141-3910(82)90044-1

    Article  Google Scholar 

  12. Schulten HR, Plage B, Ohtani H et al (1987) Studies on the thermal degradation of aromatic polyamides by pyrolysis-field ionization mass spectrometry and pyrolysis-gas chromatography. Die Angewandte Makromolekulare Chemie 155(1):1–20. https://doi.org/10.1002/apmc.1987.051550101

    Article  Google Scholar 

  13. Zhang X, Tang X, Wang R et al (2017) Thermal degradation behaviors and fire retardant properties of poly(1,3,4-oxadiazole)s (POD) and poly(m-phenylene isophthalamide) (PMIA) fibers. Fibers and Polymers 18(8):1421–1430. https://doi.org/10.1007/s12221-017-1185-7

    Article  Google Scholar 

  14. Bourbigot S, Flambard X, Poutch F (2001) Study of the thermal degradation of high performance fibres application to polybenzazole and p-aramid fibres. Polym Degrad Stab 74(2):283–290. https://doi.org/10.1016/s0141-3910(01)00159-8

    Article  Google Scholar 

  15. Perepelkin KE, Malan’ina OB, Basok MO et al (2005) Thermal degradation of thermostable aromatic fibres in air and nitrogen medium. Fibre Chem 37(3):196–198. https://doi.org/10.1007/s10692-005-0079-4

    Article  Google Scholar 

  16. Cai G, Yu W (2011) Study on the thermal degradation of high performance fibers by TG/FTIR and Py-GC/MS. Thermal Analysis and Calorimetry 104(2):757–763. https://doi.org/10.1007/s10973-010-1211-0

    Article  Google Scholar 

  17. Yin F, Tang C, Wang Q et al (2018) Molecular dynamics simulations on the thermal decomposition of meta-aramid fibers. Polymers 10(7):691. https://doi.org/10.3390/polym10070691

    Article  Google Scholar 

  18. Wang L, Chen S, Xie L et al (2017) Preparation and characterization of modified poly(m-phenylene terephthalamide) and its fiber. Polym Int 66(11):1480–1486. https://doi.org/10.1002/pi.5400

    Article  Google Scholar 

  19. Doyle CD (1962) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 6(19):120. https://doi.org/10.1002/app.1962.070061914

    Article  Google Scholar 

  20. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706. https://doi.org/10.1021/ac60131a045

    Article  Google Scholar 

  21. Murray P, White J (1955) Kinetics of the thermal dehydration of clays. Part IV.Interpretation of the differential thermal analysis of the clay minerals. British Ceramic Trans 54:204–238

    Google Scholar 

  22. Chen R, Li Q, Xu X et al (2019) Pyrolysis kinetics and reaction mechanism of representative non-charring polymer waste with micron particle size. Energy Convers Manage. https://doi.org/10.1016/j.enconman.2019.111923

    Article  Google Scholar 

  23. Chen R, Lu S, Zhang Y et al (2017) Pyrolysis study of waste cable hose with thermogravimetry/Fourier transform infrared/mass spectrometry analysis. Energy Convers Manage. https://doi.org/10.1016/j.enconman.2017.09.071

    Article  Google Scholar 

  24. He Q, Ding L, Gong Y et al (2019) Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Biores Technol. https://doi.org/10.1016/j.biortech.2019.01.138

    Article  Google Scholar 

  25. Li K, Zou Y, Bourbigot S et al (2021) Pressure effects on morphology of isotropic char layer, shrinkage, cracking and reduced heat transfer of wooden material. Proc Combust Inst 38(3):5063–5071. https://doi.org/10.1016/j.proci.2020.07.072

    Article  Google Scholar 

  26. Amer M, Brachi P, Ruoppolo G et al (2021) Pyrolysis and combustion kinetics of thermally treated globe artichoke leaves. Energy Convers Manage. https://doi.org/10.1016/j.enconman.2021.114656

    Article  Google Scholar 

  27. Wu X, Bourbigot S, Li K et al (2022) Co-pyrolysis characteristics and flammability of polylactic acid and acrylonitrile-butadiene-styrene plastic blend using TG, temperature-dependent FTIR, Py-GC/MS and cone calorimeter analyses. Fire Saf J. https://doi.org/10.1016/j.firesaf.2022.103543

    Article  Google Scholar 

  28. Suárez-Garćia, F, Martĺnez-Alonso, A, Tascón, J M D. (2004) Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon 42(8–9):1419–1426. https://doi.org/10.1016/j.carbon.2003.11.011

    Article  Google Scholar 

  29. Li N, Zhang X, Yu J et al (2020) Increased Hydrogen-bonding of Poly(m-phenylene isophthalamide) (PMIA) with Sulfonate Moiety for High-performance Easily Dyeable Fiber. Chin J Polym Sci 38(11):1230–1238. https://doi.org/10.1007/s10118-020-2416-8

    Article  Google Scholar 

  30. Chen M, Xiao C, Wang C et al (2018) Preparation and characterization of a novel thermally stable thin film composite nanofiltration membrane with poly (m-phenyleneisophthalamide) (PMIA) substrate. J Membr Sci. https://doi.org/10.1016/j.memsci.2017.12.040

    Article  Google Scholar 

  31. Chen L, Hu Z, Xie X et al (2006) Properties and Structures of Terephthalyl Chloride (TPC) Modified meta-Aramid Copolymers. J Macromol Sci Part A Pure Appl Chem 43(11):1741–1748. https://doi.org/10.1080/10601320600939429

    Article  Google Scholar 

  32. Suárez-García F, Martínez-Alonso A, Tascón JMD (2004) Nomex polyaramid as a precursor for activated carbon fibres by phosphoric acid activation. Temperature and time effects. Microporous Mesoporous Mater 75(1–2):73–80. https://doi.org/10.1016/j.micromeso.2004.07.004

    Article  Google Scholar 

  33. Zou Y, Li Y, Bourbigot S et al (2021) Determination of solid-phase reaction mechanism and chlorine migration behavior of co-pyrolyzing PVC CaCO3 based polymer using temperature-dependent FTIR and XRD analysis. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2021.109741

    Article  Google Scholar 

  34. Villar-Rodil S, Suárez-García F, Paredes JI et al (2005) Activated carbon materials of uniform porosity from polyaramid fibers. Chem Mater 17(24):5893–5908. https://doi.org/10.1021/cm051339t

    Article  Google Scholar 

  35. Irmawati R, Noorfarizan Nasriah MN, Taufiq-Yap YH et al (2004) Characterization of bismuth oxide catalysts prepared from bismuth trinitrate pentahydrate: influence of bismuth concentration. Catal Today 93(95):701–709. https://doi.org/10.1016/j.cattod.2004.06.065

    Article  Google Scholar 

  36. Fathy M, Zayed MA, Moustafa YM (2019) Synthesis and applications of CaCO3/HPC core-shell composite subject to heavy metals adsorption processes. Heliyon 5(8):e02215.https://doi.org/10.1016/j.heliyon.2019.e02215

    Article  Google Scholar 

  37. Li L, Yang Y, Lv Y et al (2020) Porous calcite CaCO3 microspheres: Preparation, characterization and release behavior as doxorubicin carrier. Colloids Surf, B. https://doi.org/10.1016/j.colsurfb.2019.110720

    Article  Google Scholar 

  38. García JM, García FC, Serna F et al (2010) High-performance aromatic polyamides. Prog Polym Sci 35(5):623–686. https://doi.org/10.1016/j.progpolymsci.2009.09.002

    Article  Google Scholar 

  39. Liang S, Wang F, Liang J et al (2020) Synergistic effect between flame retardant viscose and nitrogen-containing intrinsic flame-retardant fibers. Cellulose 27(10):6083–6092. https://doi.org/10.1007/s10570-020-03203-9

    Article  Google Scholar 

  40. Zhang X, Shi M (2019) Flame retardant vinylon/poly(m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2018.10.091

    Article  Google Scholar 

  41. Chen R, Li Q, Xu X et al (2019) Comparative pyrolysis characteristics of representative commercial thermosetting plastic waste in inert and oxygenous atmosphere. Fuel. https://doi.org/10.1016/j.fuel.2019.02.129

    Article  Google Scholar 

  42. Gong Z, Xia H, Liu Z et al (2016) TG-MS Study on Coal/Char Combustion by Equivalent Characteristic Spectrum Analysis; 8th International Symposium on Coal Combustion (ISCC). Tsinghua Univ, Beijing, pp 19–222015

    Google Scholar 

  43. Chen H, Namioka T, Yoshikawa K (2011) Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge. Appl Energy 88(12):5032–5041. https://doi.org/10.1016/j.apenergy.2011.07.007

    Article  Google Scholar 

  44. Matsueda M, Mattonai M, Iwai I et al (2021) Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC-MS. J Anal Appl Pyrol. https://doi.org/10.1016/j.jaap.2020.104993

    Article  Google Scholar 

  45. Khanna YP, Pearce EM, Smith JS et al (1981) Aromatic polyamides. II. Thermal degradation of some aromatic polyamides and their model diamides. J Polym Sci Polym Chem Ed 19(11):2817–2834. https://doi.org/10.1002/pol.1981.170191115

    Article  Google Scholar 

  46. Karacan I, Erzurumluoğlu L (2015) The effect of carbonization temperature on the structure and properties of carbon fibers prepared from poly(m-phenylene isophthalamide) precursor. Fibers and Polymers 16(8):1629–1645. https://doi.org/10.1007/s12221-015-5030-6

    Article  Google Scholar 

  47. Ramani R, Kotresh TM, Indu Shekar R et al (2018) Positronium probes free volume to identify para- and meta-aramid fibers and correlation with mechanical strength. Polymer. https://doi.org/10.1016/j.polymer.2017.11.064

    Article  Google Scholar 

  48. Li K, Li Y, Zou Y et al (2022) Improving the fire performance of structural insulated panel core materials with intumescent flame-retardant epoxy resin adhesive. Fire Technol. https://doi.org/10.1007/s10694-021-01203-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Project of State Grid Corporation of China (521205200049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaqing Zhang or Yi Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, Y., Chen, Q. et al. Kinetic Analysis, Solid Residues and Volatile Products of Pyrolyzing Nomex Insulation Paper in Nitrogen and Air Atmosphere. Fire Technol 60, 1119–1141 (2024). https://doi.org/10.1007/s10694-022-01266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-022-01266-7

Keywords

Navigation