Skip to main content
Log in

Evaluation of localized pool fire models to predict the thermal field in offshore topside structures

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This article presents a comparative study to predict the thermal behavior of an offshore topside structure under localized fire using different fire models. Thermal fields are estimated using models with different approaches. Sophisticated fire models based on computational fluid dynamics (CFD) are often used in the analysis of this type of accident. However, their high complexity and calculation time make it difficult to use in the design stage of the structure. Simple models usually offer lower temperatures than those estimated by the CFD-FEM model, with limited use in structures with complex geometries. Localized fire with ellipsoidal solid flame (LF-ESF) model was developed as an alternative to previous models that are excessively complex (CFD based) or estimate lower temperatures (Simple). LF-ESF model can evaluate in the design stage the thermal behavior of steel structures under localized fires with the appropriate accuracy in acceptable computation time. The thermal analysis is developed with the aid of commercial software of finite elements. Three case studies are analyzed considering localized fire due to the burning of hydrocarbons. The first two develop the thermal analysis in simple structures and show the main differences between each fire model considered. The last case study evaluated the thermal behavior of an offshore topside structure. The results obtained allow to conclude that the LF-ESF model realistically represents the temperature fields generated by the fire with a relatively low computational cost as compared to the CFD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\( b \) :

Characteristic plume radius (m)

\( c_{p} \) :

Specific heat (J/g K)

\( e_{{{\text{r}},{\text{abs}}}}^{{\prime \prime }} \) :

Radiant energy absorbed (kW/m2)

\( e_{{{\text{r}},{\text{emi}}}}^{{\prime \prime }} \) :

Radiant energy emitted (kW/m2)

\( e_{{{\text{r}},{\text{inc}}}}^{{\prime \prime }} \) :

Radiant incident energy (kW/m2)

\( e_{{{\text{r}},{\text{ref}}}}^{{\prime \prime }} \) :

Radiant energy reflected (kW/m2)

\( g \) :

Gravitational acceleration (m/s2)

\( h_{\text{tot}}^{\text{AST}} \) :

Net adiabatic heat transfer coefficient (kW/m2 K)

\( h_{\text{conv}} \) :

Convective heat transfer coefficient (kW/m2 K)

\( k \) :

Thermal conductivity (W/mK)

\( m^{{\prime \prime }} \) :

Burning rate per unit area (kg/m2 s)

\( q_{\text{conv}}^{{\prime \prime }} \) :

Convective heat flux (kW/m2)

\( q_{f} \) :

Heat release rate per unit area (kW/m2)

\( q_{\text{tot}}^{{\prime \prime }} \) :

Net heat flux (kW/m2)

\( q_{\text{rad}}^{{\prime \prime }} \) :

Radiant heat flux (kW/m2)

\( r \) :

Radial distance to flame axis (m)

\( \bar{r} \) :

Normalized flame axis distance

\( t_{\text{d}} \) :

Fire decay time for NFSC curve (s)

\( t_{\text{g}} \) :

Fire growth time for NFSC curve (s)

\( t_{s} \) :

Fire constant behavior time for NFSC curve (s)

\( z \) :

Height of the selected point (m)

\( z_{o} \) :

Height of the virtual source (m)

\( A_{\text{fs }} \) :

Free surface area of the pool fire (m2)

\( D^{*} \) :

Plume characteristic diameter (m)

\( D \) :

Equivalent diameter (m)

\( E_{\text{av}} \) :

Flame average emissive power (kW/m2)

\( E_{\text{b}} \) :

Black body emissive power (kW/m2)

\( E_{\text{fl}} \) :

Flame emissive power (kW/m2)

\( F_{ij} \) :

Geometric view factor

\( H_{\text{c}} \) :

Height of the compartment (m)

\( H_{\text{fl}} \) :

Flame height (m)

\( \bar{H}_{\text{fl}} \) :

Normalized height

\( {\text{HRR}} \) :

Heat release rate (kW)

\( R^{*} \) :

Numerical grid spatial resolution

α s :

Absorptivity

\( \beta \) :

Mean beam length corrector

\( \delta x \) :

Characteristic length

\( \varepsilon_{\text{s}} \) :

Surface emissivity

\( \varepsilon_{\text{fl}} \) :

Flame emissivity

\( \theta_{\text{AST}} \) :

Adiabatic surface temperature (K)

\( \bar{\theta }_{{\left( {\omega ,t} \right)}} \) :

Normalized temperature

\( \theta_{\text{fl}} \) :

Real flame temperature (K)

\( \theta_{\text{fl,eq}} \) :

Equivalent flame temperature (K)

\( \theta_{\text{g}} \) :

Gas temperature (°C, K)

\( \Delta \theta_{o} \) :

Plume centerline temperature (°C)

\( \theta_{\text{s}} \) :

Exposed surface’s temperature (°C, K)

\( \theta_{\infty } \) :

Ambient temperature (K)

\( \kappa \) :

Absorption–extinction coefficient of the flame (1/m)

\( \rho \) :

Specific mass (kg/m3)

\( \rho_{\infty } \) :

Air density (kg/m3)

\( \sigma \) :

Stefan–Boltzmann constant (kW/m2  K4)

\( \tau \) :

Atmospheric transmissivity

\( \varphi \) :

Fire intensity coefficient

\( \chi_{\text{r}} \) :

HRR’s radiant fraction

\( \chi_{\text{lum}} \) :

Percentage of visible flame

\( \omega \) :

Dependent variable (Eq. 14)

\( \Delta H_{{{\text{c}},{\text{eff}}}} \) :

Combustion specific heat (kJ/kg)

References

  1. Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M, Torero JL, Watts JM Jr, Wieczorek CJ (2016) SFPE handbook of fire protection engineering, 5th edn. SFPE Springer-Verlag, New York. https://doi.org/10.1007/978-1-4939-2565-0

    Book  Google Scholar 

  2. Manco MR, Vaz MA, Cyrino JCR, Landesmann A (2013) Behavior of stiffened panels exposed to fire. In: Analysis and design of marine structures - Proceedings of the 4th International Conference on Marine Structures, MARSTRUCT 2013, pp 101–108. https://doi.org/10.1201/b15120-16

  3. Manco MR, Landesmann A, Vaz MA, Cyrino JCR (2016) Numerical model for analysis of offshore structures subjected to pool fires. Mar Syst Ocean Technol 11:19–29. https://doi.org/10.1007/s40868-016-0014-y

    Article  Google Scholar 

  4. Manco MR, Vaz MA, Cyrino JCR, Landesmann A (2018) Ellipsoidal solid flame model for structures under localized fire. Fire Technol 54:1505–1532. https://doi.org/10.1007/s10694-018-0750-y

    Article  Google Scholar 

  5. American Bureau of Shipping (2013) Guidance notes on a accidental load analysis and design for offshore structures. https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/other/197_accload/accidental_load_gn_e.pdf

  6. International Maritime Organization (2001) Guidelines on alternative design and arrangements for fire safety

  7. Quintiere JG (2006) Fundamentals of fire phenomena, Wiley. https://doi.org/10.1002/0470091150

  8. McGrattan K, Hostikka S, McDermott R, et al (2015) Fire Dynamics simulator, User’s Guide

  9. Shokri M, Beyler CL (1989) Radiation from large pool fires. J Fire Prot Eng 1:141–149. https://doi.org/10.1177/104239158900100404

    Article  Google Scholar 

  10. Heskestad G (1984) Engineering relations for fire plumes. Fire Saf J 7:25–32. https://doi.org/10.1016/0379-7112(84)90005-5

    Article  Google Scholar 

  11. Heskestad G, Hamada T (1993) Ceiling jets of strong fire plumes. Fire Saf J 21:69–82. https://doi.org/10.1016/0379-7112(93)90005-B

    Article  Google Scholar 

  12. Wickström U (2016) Temperature calculation in fire safety engineering, 1st edn. Springer, Switzerland. https://doi.org/10.1007/978-3-319-30172-3

    Book  Google Scholar 

  13. Wickström U (2011) The adiabatic surface temperature and the plate thermometer. Fire saf sci 10:1001–1011. https://doi.org/10.3801/IAFSS.FSS.10-1001

    Article  Google Scholar 

  14. McGrattan K, Hostikka S, McDermott R, et al (2015) Fire dynamics simulator, technical reference guide, 6.2 edn, vol 1: Mathematical Model, vol 2: Verification Guide, vol 3: Validation Guide

  15. Silva JCG, Landesmann A, Ribeiro FLB (2016) Fire-thermomechanical interface model for performance-based analysis of structures exposed to fire. Fire Saf J 83:66–78. https://doi.org/10.1016/j.firesaf.2016.04.007

    Article  Google Scholar 

  16. Zhang C, Silva JG, Weinschenk C et al (2016) Simulation methodology for coupled fire-structure analysis: modeling localized fire tests on a steel column. Fire Technol 52:239–262. https://doi.org/10.1007/s10694-015-0495-9

    Article  Google Scholar 

  17. Zhang C, Li GQ (2012) Fire dynamic simulation on thermal actions in localized fires in large enclosure. Adv Steel Constr 8:124–136

    Google Scholar 

  18. Heskestad G (1983) Virtual origins of fire plumes. Fire Saf J 5:109–114. https://doi.org/10.1016/0379-7112(83)90003-6

    Article  Google Scholar 

  19. Alpert RL (1972) Calculation of response time of ceiling-mounted fire detectors. Fire Technol 8:181–195. https://doi.org/10.1007/BF02590543

    Article  Google Scholar 

  20. European committee for Standardizaion (2002) EN 1991-1-2: Eurocode 1: Actions on structures: Part 1-2: General actions—Actions on structures exposed to fire. Br Stand Inst

  21. Zhang C, Zhang Z, Li GQ (2016) Simple vs. sophisticated fire models to predict performance of SHS column in localized fire. J Constr Steel Res 120:62–69. https://doi.org/10.1016/j.jcsr.2015.12.026

    Article  Google Scholar 

  22. Muñoz M, Planas E, Ferrero F, Casal J (2007) Predicting the emissive power of hydrocarbon pool fires. J Hazard Mater 144:725–729. https://doi.org/10.1016/j.jhazmat.2007.01.121

    Article  Google Scholar 

  23. Rebec A, Plešec P, Kolšek J (2014) Pool fire accident in an aboveground LFO tank storage: thermal analysis. Fire Saf J 67:135–150. https://doi.org/10.1016/j.firesaf.2014.05.022

    Article  Google Scholar 

  24. Zhang C, Usmani A (2015) Heat transfer principles in thermal calculation of structures in fire. Fire Saf J 78:85–95. https://doi.org/10.1016/j.firesaf.2015.08.006

    Article  Google Scholar 

  25. Mudan KS (1984) Thermal radiation hazards from hydrocarbon pool fires. Prog Energy Combust Sci 10:59–80. https://doi.org/10.1016/0360-1285(84)90119-9

    Article  Google Scholar 

  26. Manco MR (2016) Numerical model for thermomechanical analysis of structures sumitted to pool fire (in Potuguese). Federal University of Rio de Janeiro

  27. Byström A, Cheng X, Wickström U, Veljkovic M (2013) Measurement and calculation of adiabatic surface temperature in a full-scale compartment fire experiment. J Fire Sci 31:35–50. https://doi.org/10.1177/0734904112453012

    Article  Google Scholar 

  28. Byström A, Cheng X, Wickström U, Veljkovic M (2012) Full-scale experimental and numerical studies on compartment fire under low ambient temperature. Build Environ 51:255–262. https://doi.org/10.1016/j.buildenv.2011.11.010

    Article  Google Scholar 

  29. European committee for standardizaion (2005) EN 1993-1-2: Eurocode 3: Design of steel structures: Part 1-2: General rules—Structural fire design. Br Stand Inst 2:

  30. Wen JX, Kang K, Donchev T, Karwatzki JM (2007) Validation of FDS for the prediction of medium-scale pool fires. Fire Saf J 42:127–138. https://doi.org/10.1016/j.firesaf.2006.08.007

    Article  Google Scholar 

  31. Loy YY, Rangaiah GP (2018) Surrogate modelling of net radiation flux from pool fires in a hydrocarbon storage facility. Process Saf Environ Prot 114:296–309. https://doi.org/10.1016/j.psep.2017.12.024

    Article  Google Scholar 

  32. Fernandes Oliveira RL, Doubek G, Vianna SSV (2019) On the behaviour of the temperature field around pool fires in controlled experiment and numerical modelling. Process Saf Environ Prot 123:358–369. https://doi.org/10.1016/j.psep.2018.12.031

    Article  Google Scholar 

  33. Xin Y, Filatyev SA, Biswas K et al (2008) Fire dynamics simulations of a one-meter diameter methane fire. Combust Flame 153:499–509. https://doi.org/10.1016/j.combustflame.2008.01.013

    Article  Google Scholar 

  34. Wickström U, Hunt S, Lattimer B et al (2018) Technical comment-Ten fundamental principles on defining and expressing thermal exposure as boundary conditions in fire safety engineering. Fire Mater 42:985–988. https://doi.org/10.1002/fam.2660

    Article  Google Scholar 

  35. Wickström U (1994) The plate thermometer: a simple instrument for reaching harmonized fire resistance tests. Fire Technol 30:195–208. https://doi.org/10.1007/BF01040002

    Article  Google Scholar 

  36. Ingason H, Wickström U (2007) Measuring incident radiant heat flux using the plate thermometer. Fire Saf J 42:161–166. https://doi.org/10.1016/j.firesaf.2006.08.008

    Article  Google Scholar 

  37. Reddy JN (2004) An introduction to nonlinear finite element analysis, Oxford. https://doi.org/10.1093/acprof:oso/9780198525295.001.0001

  38. Dassault Systèmes Simulia, Fallis A., Techniques D (2013) ABAQUS documentation. Abaqus 6.12 53:1689–1699

  39. Wickström U, Anderson J, Sjöström J (2019) Measuring incident heat flux and adiabatic surface temperature with plate thermometers in ambient and high temperatures. Fire Mater 43:51–56. https://doi.org/10.1002/fam.2667

    Article  Google Scholar 

  40. Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18:255–272. https://doi.org/10.1016/0379-7112(92)90019-9

    Article  Google Scholar 

  41. Vassart O, Zhao B, Cajot L et al (2014) Eurocodes: background & applications structural fire design. https://doi.org/10.2788/85432

  42. Dhurandher BK, Kumar R, Dhiman AK et al (2017) An experimental study of vertical centreline temperature and velocity profile of buoyant plume in cubical compartment. J Braz Soc Mech Sci Eng 39:1813–1822. https://doi.org/10.1007/s40430-016-0629-0

    Article  Google Scholar 

  43. McGrattan KB, Baum HR, Hamins A (2000) NISTIR 6546 thermal radiation from large pool fires. https://doi.org/10.6028/NIST.IR.6546

  44. Sudheer S, Prabhu SV (2012) Measurement of flame emissivity of hydrocarbon pool fires. Fire Technol 48:183–217. https://doi.org/10.1007/s10694-010-0206-5

    Article  Google Scholar 

  45. Sundén B, Faghri M (2008) Transport phenomena in fires, 1st edn. WIT Press, Southampton

    Book  Google Scholar 

  46. Fleury R, Spearpoint M, Fleischmann C (2011) Evaluation of thermal radiation models for fire spread between objects. Proceedings

  47. Casal J (2008) Evaluation of the effects and consequences of major accidents in industrial plants. Ind Saf Ser 8:345–346. https://doi.org/10.1016/S0921-9110(08)80011-0

    Article  Google Scholar 

  48. Santos FDS, Landesmann A (2014) Thermal performance-based analysis of minimum safe distances between fuel storage tanks exposed to fire. Fire Saf J 69:57–68. https://doi.org/10.1016/j.firesaf.2014.08.010

    Article  Google Scholar 

  49. Louca LA, Mohamed Ali RM (2008) Improving the ductile behaviour of offshore topside structures under extreme loads. Eng Struct 30:506–521. https://doi.org/10.1016/j.engstruct.2007.04.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the National Agency of Petroleum, Natural Gas and Biofuels of Brazil (ANP) and National Council of Scientific and Technological Development of Brazil (CNPq) for their support to the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel R. Manco or Murilo A. Vaz.

Additional information

Technical Editor: Celso Kazuyuki Morooka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manco, M.R., Vaz, M.A., Cyrino, J.C.R. et al. Evaluation of localized pool fire models to predict the thermal field in offshore topside structures. J Braz. Soc. Mech. Sci. Eng. 42, 613 (2020). https://doi.org/10.1007/s40430-020-02694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02694-8

Keywords

Navigation