Skip to main content
Log in

Pool Fires in a Corner Ceiling Vented Cabin: Ghosting Flame and Corresponding Fire Parameters

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Ghosting flame phenomena and the corresponding fire dynamics in a corner ceiling vented cabin were experimentally studied. Various parameters including fuel mass loss rate (MLR), gas and fuel temperature as well as local oxygen concentration were measured in the experiments. Ghosting flame was observed when the fuel MLR increased to its maximum value and the oxygen concentration dropped to extremely low levels in large ceiling vent tests. A cross flow is expected above the burner. The most striking characteristics of the ghosting flame are its less luminous blue color at the flame base and its location relative to the ceiling vent. Two essential conditions must be satisfied for the occurrence of such flame phenomenon: the flame must blow off from the original location and it must be able to stabilize somewhere else. The transition for ghosting flame behavior is the flame being blown off. Based on the stabilization theory, a flame will destabilize where the local gas flow rate exceeds nearly three times the local premixed flame burning velocity. It is plausible that flame blow-off will occur for these near limit flames. After blow-off, flame moves to a different location where the crossflow velocity is lower and stabilizes in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Hisahiro T (1989) Model experiments of ship fire. Symposium (International) on Combustion 22(1):1311–1317. doi:10.1016/s0082-0784(89)80142-0.

  2. Steward FR, Morrison L, Mehaffey J (1992) Full scale fire tests for ship accommodation quarters. Fire Technol 28(1):31–47. doi:10.1007/BF01858050.

    Article  Google Scholar 

  3. Arvidson M (2014) Large-scale water spray and water mist fire suppression system tests for the protection of Ro–Ro cargo decks on ships. Fire Technology 50(3): 589–610. doi:10.1007/s10694-012-0312-7.

    Article  Google Scholar 

  4. Mouritz A, Feih S, Mathys Z, Gibson A (2011) Mechanical property degradation of naval composite materials. Fire Technol 47(4):913–939. doi:10.1007/s10694-009-0125-5.

    Article  Google Scholar 

  5. Zhang J, Lu S, Li C, Yuen RKK, Li Q (2014) Fire-induced temperature correlations in ceiling vented compartments. Fire Technol. doi:10.1007/s10694-014-0386-5.

    Google Scholar 

  6. Back GG, Forssell EW, Wakelin AJ, Beene D, Nash L (2006) An evaluation of total flooding high expansion foam fire suppression systems for machinery space applications. Fire Technol 42(3):187–210. doi:10.1007/s10694-006-8432-6.

    Article  Google Scholar 

  7. Ben D-F, Ma B, Chen X-L, Zhu S-H, Tang H-T, Lu W, Xia Z-F (2010) Burn injuries caused by ship fire: a 12-year study in Shanghai. Burns 36(4):576–580. doi:10.1016/j.burns.2009.08.003.

    Article  Google Scholar 

  8. Zhang J, Lu S, Li Q, Yuen RKK, Chen B, Yuan M, Li C (2012) Smoke filling in closed compartments with elevated fire sources. Fire Saf J 54(0):14–23. doi:10.1016/j.firesaf.2012.08.003.

    Article  Google Scholar 

  9. Yuan M, Lu S, Zhou Y, Zhang J (2012) A simplified mathematical model for predicting the vertical temperature profiles in enclosure fires without vertical opening. Fire Technol. doi:10.1007/s10694-012-0315-4.

    Google Scholar 

  10. Zhang J, Lu S, Li Q, Yuen R, Yuan M, Li C (2012) Impacts of elevation on pool fire behavior in a closed compartment: a study based upon a distinct stratification phenomenon. J Fire Sci 31(2):178–193. doi:10.1177/0734904112460203.

    Article  Google Scholar 

  11. Zhang J, Lu S, Li Q, Li C, Yuan M, Yuen R (2013) Experimental study on elevated fires in a ceiling vented compartment. J Therm Sci 22(4):377–382. doi:10.1007/s11630-013-0639-5.

    Article  Google Scholar 

  12. Zhang J, Lu S, Li C, Kit Yuen RK (2014) Performance of overall heat transfer coefficient and exploring heat transfer through the ceiling vent of compartment fire in ship structures with A60 constructions. Ships Offshore Struct. doi: 10.1080/17445302.2013.876166.

    Google Scholar 

  13. He Q, Li C, Lu S (2013) Vent size effect on self-extinction of pool fire in a ceiling vented compartment. Procedia Eng 62:242–249. doi:10.1016/j.proeng.2013.08.061.

    Article  Google Scholar 

  14. Chen B, Lu S, Li C, Yuan M (2013) Analysis of compartment fires with a ceiling vent. Procedia Eng 62:258–265. doi:10.1016/j.proeng.2013.08.063.

    Article  Google Scholar 

  15. Foote K (1987) 1986 LLNL enclosure fire tests data report. Lawrence Livermore National Lab., Livermore.

    Google Scholar 

  16. Stern-Gottfried J, Rein G (2012) Travelling fires for structural design. Part II: design methodology. Fire Safety J 54:96–112. doi:10.1016/j.firesaf.2012.06.011.

    Article  Google Scholar 

  17. Law A, Stern-Gottfried J, Gillie M, Rein G (2011) The influence of travelling fires on a concrete frame. Eng Struct 33(5):1635–1642. doi:10.1016/j.engstruct.2011.01.034.

    Article  Google Scholar 

  18. Tu K-M (1991) An experimental study of top vented compartment fires. National Institute of Standards and Technology, Building and Fire Research Laboratory.

  19. Wakatsuki K (2001) Low ventilation small-scale compartment fire phenomena: ceiling vents. College Park: University of Maryland.

    Google Scholar 

  20. Jaluria Y, Chiu W, Lee S-K (1995) Flow of smoke and hot gases across horizontal vents in room fires. Combust Sci Technol 110(1):197–208. doi:10.1080/00102209508951923.

    Article  Google Scholar 

  21. Jaluria Y, Lee S-K, Mercier G, Tan Q (1998) Transport processes across a horizontal vent due to density and pressure differences. Exp Thermal Fluid Sci 16(3):260–273. doi:10.1016/S0894-1777(97)10021-8.

    Article  Google Scholar 

  22. Tan Q, Jaluria Y (2001) Mass flow through a horizontal vent in an enclosure due to pressure and density differences. Int J Heat Mass Transf 44(8):1543–1553. doi:10.1016/S0017-9310(00)00198-8.

    Article  Google Scholar 

  23. Chow W, Gao Y (2011) Buoyancy and inertial force on oscillations of thermal-induced convective flow across a vent. Build Environ 46(2):315–323. doi:10.1016/j.buildenv.2010.07.023.

    Article  Google Scholar 

  24. Chow W, Li J (2011) On the bidirectional flow across an atrium ceiling vent. Build Environ 46 (12):2598–2602. doi:10.1016/j.buildenv.2011.06.018.

    Article  Google Scholar 

  25. Audouin L, Such J, Malet J, Casselman C (1997) A real scenario for a ghosting flame. In: Fifth International Symposium on Fire Safety Science. Melbourne, pp. 1261–1272.

  26. Bertin G, Most JM, Coutin M (2002) Wall fire behavior in an under-ventilated room. Fire Saf J 37(7):615–630. doi:10.1016/S0379-7112(02)00016-4.

    Article  Google Scholar 

  27. Utiskul Y, Quintiere JG, Rangwala AS, Ringwelski BA, Wakatsuki K, Naruse T (2005) Compartment fire phenomena under limited ventilation. Fire Saf J 40(4):367–390. doi:10.1016/j.firesaf.2005.02.002.

    Article  Google Scholar 

  28. Sugawa O, Kawagoe K, Oka Y, Ogahara I (1989) Burning behavior in a poorly-ventilated compartment fire-ghosting fire. Fire Sci Technol 9(2):5–14.

    Article  Google Scholar 

  29. Pearson A, Most J-M, Drysdale D (2007) Behaviour of a confined fire located in an unventilated zone. Proc Combust Inst 31(2):2529–2536. doi:10.1016/j.proci.2006.08.019.

    Article  Google Scholar 

  30. Pearson AE (2007) Experimental study of the combustion regimes of a compartment fire under conditions of underventilation. Poitiers: University of Poitiers.

    Google Scholar 

  31. Chen B, Lu S-X, Li C-H, Kang Q-S, Lecoustre V (2011) Initial fuel temperature effects on burning rate of pool fire. J Hazard Mater 188(1–3):369–374. doi:10.1016/j.jhazmat.2011.01.122.

    Article  Google Scholar 

  32. Chen B, Lu S, Li C, Kang Q, Yuan M (2012) Unsteady burning of thin-layer pool fires. J Fire Sci 30(1):3–15. doi:10.1177/0734904111415807.

    Article  Google Scholar 

  33. Utiskula Y, Quintiere JG, Oscillation and fire area shrinkage phenomena of wood crib and heptane pool in ventilation-controlled compartment fires. In: Proceedings of the Interflam 2007, 11th International Fire Science & Engineering Conference, London, 3–5th September.

  34. Morehart JH, Zukoski EE, Kubota T (1991) Characteristics of large diffusion flames burning in a vitiated atmosphere. Fire Saf Sci 3:575–583. doi:10.3801/IAFSS.FSS.3-575.

    Article  Google Scholar 

  35. Morehart JH (1991) Species produced in fires burning in two-layered and homogenous vitiated environments. California Institute of Technology, Thesis of doctor.

  36. Huang R, Chang J (1994) The stability and visualized flame and flow structures of a combusting jet in cross flow. Combust Flame 98(3):267–278.

    Article  MathSciNet  Google Scholar 

  37. Huang RF, Yang MJ (1996) Thermal and concentration fields of burner-attached jet flames in cross flow. Combust Flame 105(1):211–224.

    Article  Google Scholar 

  38. Cooper LY (1995) Combined buoyancy and pressure-driven flow through a shallow, horizontal, circular vent. J Heat Transfer 117(3):659–667. doi:10.1115/1.2822627.

    Article  Google Scholar 

  39. Cooper LY (1996) Calculating combined buoyancy-and pressure-driven flow through a shallow, horizontal, circular vent: application to a problem of steady burning in a ceiling-vented enclosure. Fire Saf J 27(1):23–35. doi:10.1016/S0379-7112(96)00041.

    Article  Google Scholar 

  40. Epstein M (1988) Buoyancy-driven exchange flow through small openings in horizontal partitions. J Heat Transfer 110(4a):885–893. doi:10.1115/1.3250589.

    Article  Google Scholar 

  41. Wilson DA, Lyons KM (2008) Effects of dilution and co-flow on the stability of lifted non-premixed biogas-like flames. Fuel 87(3):405–413.

    Article  Google Scholar 

  42. Lock A, Briones AM, Aggarwal SK, Puri IK, Hegde U (2007) Liftoff and extinction characteristics of fuel-and air-stream-diluted methane–air flames. Combust Flame 149(4):340–352.

    Article  Google Scholar 

  43. Lyons KM (2007) Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog Energy Combust Sci 33(2):211–231.

    Article  Google Scholar 

  44. Muniz L, Mungal M (1997) Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust Flame 111(1):16–31.

    Article  Google Scholar 

  45. Van Lipzig J, Nilsson E, De Goey L, Konnov A (2011) Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel 90(8):2773–2781.

    Article  Google Scholar 

  46. Davis SG, Law CK. (1998) Laminar flame speeds an oxidation kinetics of iso-octane-air and n heptane-air flames. Twenty-seventh symposium on combustion. Pittsburgh: The Combustion Institute, pp. 521–527.

    Google Scholar 

  47. Chong CT, Hochgreb S (2011) Measurements of laminar flame speeds of liquid fuels: jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV). Proc Combust Inst 33:979–986.

    Article  Google Scholar 

  48. K. Kumar, Freeh JE, Sung CJ, Huang Y (2007) Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures. J Propul Power 23:428–436.

    Article  Google Scholar 

  49. Huang Y, Sung CJ, Eng JA (2004) Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust Flame 139:239–251.

    Article  Google Scholar 

  50. Kwon OC, Hassan MI, Faeth GM (2000) Flame/stretch interaction of premixed fuel-vapor/O2/N2 flames. J Propul Power 16:513–522.

    Article  Google Scholar 

Download references

Acknowledgments

The present work was supported by National Natural Science Foundation of China (Project nos. 51206157 and 51276177), and the Research Fund for the Doctoral Program of Higher Education of China (Grant nos. 20123402120018 and 20123402110048). The authors would like to thank Prof. Ofodike A. Ezekoye and Austin Anderson form University of Texas at Austin for their help with the discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Li, C., Lu, S. et al. Pool Fires in a Corner Ceiling Vented Cabin: Ghosting Flame and Corresponding Fire Parameters. Fire Technol 51, 537–552 (2015). https://doi.org/10.1007/s10694-015-0467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-015-0467-0

Keywords

Navigation