Skip to main content

Advertisement

Log in

Screening for germline mutations in mismatch repair genes in patients with Lynch syndrome by next generation sequencing

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Lynch syndrome (LS) is an autosomal dominant disorder, with high penetrance that affects approximately 3% of the cases of colorectal cancer. Affected individuals inherit germline mutations in genes responsible for DNA mismatch repair, mainly at MSH2, MLH1, MSH6 and PMS2. The molecular screening of these individuals is frequently costly and time consuming due to the large size of these genes. In addition, PMS2 mutation detection is often a challenge because there are 16 different pseudogenes identified until now. In the present work we evaluate a molecular screening strategy based in next generation sequencing (NGS) in order to optimize the mutation detection in LS patients. We established 16 multiplex PCRs for MSH2, MSH6 and MLH1 and 5 Long-Range PCRs for PMS2, coupled with NGS. The strategy was validated by screening 66 patients who filled Bethesda and Amsterdam criteria for LS from health institutions of Brazil. The mean depth of coverage for MSH2, MSH6, MLH1 and PMS2 genes was 7.988, 36.313, 11.899 and 4.772 times, respectively. Ninety-four variants were found in exons and flanking intron/exon regions for the four MMR genes. Twenty-five were pathogenic or VUS and found in 32 patients (7 in MSH2, 5 in MSH6, 12 in MLH1 e 1 in PMS2). All variants were confirmed by Sanger sequencing. The strategy was efficient to reduce time consuming and costs to identify genetic changes at these MMR genes, reducing in three times the number of PCR reactions performed per patient and was efficient in identifying variants at PMS2 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Giardiello FM, Allen JI, Axilbund JE et al (2014) Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Gastroenterology 147(2):502–526. doi:10.1053/j.gastro.2014.04.001

    Article  PubMed  Google Scholar 

  2. Jasperson KW, Tuohy TM, Neklason DW, Burt RW (2010) Hereditary and familial colon. Cancer Gastroenterol 138(6):2044–2058. doi:10.1053/j.gastro.2010.01.054.Hereditary

    Article  CAS  Google Scholar 

  3. Hampel H (2016) Genetic counseling and cascade genetic testing in Lynch syndrome. Fam Cancer 15(3):423–427. doi:10.1007/s10689-016-9893-5

    Article  PubMed  Google Scholar 

  4. Plazzer JP, Sijmons RH, Woods MO et al (2013) The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam Cancer 12(2):175–180. doi:10.1007/s10689-013-9616-0

    Article  PubMed  CAS  Google Scholar 

  5. Noll A, Parekh P, Karlitz J (2016) Diagnosis of Lynch syndrome before colorectal resection: does it matter?. Tech Coloproctol 20(4):203–205. doi:10.1007/s10151-016-1433-7

    Article  PubMed  CAS  Google Scholar 

  6. Fishel R, Lescoe MK, Rao MRS et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038. doi:10.1016/0092-8674(93)90546-3

    Article  PubMed  CAS  Google Scholar 

  7. Miyaki M, Konishi M, Tanaka K et al (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17(3):271–272. doi:10.1038/ng1197-271

    Article  PubMed  CAS  Google Scholar 

  8. Bronner CE, Baker SM, Morrison PT et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368(6468):258–261. doi:10.1038/368258a0

    Article  PubMed  CAS  Google Scholar 

  9. Nicolaides NC, Papadopoulos N, Liu B et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371(6492):75–80. doi:10.1038/371075a0

    Article  PubMed  CAS  Google Scholar 

  10. Van der Klift HM, Mensenkamp AR, Drost M et al (2016) comprehensive mutation analysis of PMS2 in a large cohort of probands suspected of Lynch syndrome or constitutional mismatch repair deficiency syndrome. Hum Mutat 37(11):1162–1179. doi:10.1002/humu.23052

    Article  PubMed  CAS  Google Scholar 

  11. Vasen HF, Blanco I, Aktan-Collan K et al (2013) Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 62(6):812–823. doi:10.1136/gutjnl-2012-304356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Susswein LR, Marshall ML, Nusbaum R et al (2015) Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med 18:1–10. doi:10.1038/gim.2015.166

    Article  CAS  Google Scholar 

  13. Hoppman-Chaney N, Peterson LM, Klee EW, Middha S, Courteau LK, Ferber MJ (2010) Evaluation of oligonucleotide sequence capture arrays and comparison of next-generation sequencing platforms for use in molecular diagnostics. Clin Chem 56(8):1297–1306. doi:10.1373/clinchem.2010.145441

    Article  PubMed  CAS  Google Scholar 

  14. Talseth-Palmer BA, Bauer DC, Sjursen W et al (2016) Targeted next-generation sequencing of 22 mismatch repair genes identifies Lynch syndrome families. Cancer Med 5(5):929–941. doi:10.1002/cam4.628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jansen AML, Geilenkirchen MA, Van Wezel T, Jagmohan-Changur SC et al (2016) Whole gene capture analysis of 15 CRC susceptibility genes in suspected Lynch syndrome patients. PLoS ONE 11(6):1–15. doi:10.1371/journal.pone.0157381

    Article  CAS  Google Scholar 

  16. Hansen MF, Neckmann U, Lavik LAS et al (2014) A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes. Mol Genet genomic Med 2(2):186–200. doi:10.1002/mgg3.62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Carneiro da Silva F, de Oliveira Ferreira JR, Torrezan GT et al (2015) Clinical and molecular characterization of Brazilian patients suspected to have Lynch syndrome. PLoS One 10(10):e0139753. doi:10.1371/journal.pone.0139753

    Article  CAS  Google Scholar 

  18. De Vos M, Hayward BE, Picton S, Sheridan E, Bonthron DT (2004) Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet 74:954–964

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hayward BE, De Vos M, Valleley EM et al (2007) Extensive gene conversion at the PMS2 DNA mismatch repair locus. Hum Mutat 28(5):424–430. doi:10.1002/humu.20457

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Dai H, Feng Y et al (2015) A comprehensive strategy for accurate mutation detection of the highly homologous PMS2. J Mol Diagnostics 17(5):545–553. doi:10.1016/j.jmoldx.2015.04.001

    Article  CAS  Google Scholar 

  21. Zumstein V, Vinzens F, Zettl A, Heinimann K, Koeberle D, Bolli M (2016) Systematic immunohistochemical screening for Lynch syndrome in colorectal cancer : a single centre experience of 486 patients. Swiss Med Wkly 146:1–6. doi:10.4414/smw.2016.14315

    Article  Google Scholar 

  22. Ricciardiello L, Ahnen DJ, Lynch PM (2016) Chemoprevention of hereditary colon cancers: time for new strategies. Nat Rev Gastroenterol Hepatol 13(6):352–361. doi:10.1038/nrgastro.2016.56

    Article  PubMed  CAS  Google Scholar 

  23. Beck NE, Tomlinson IPM, Homfray T, Hodgson SV, Harocopos CJ, Bodmer WF (1997) Genetic testing is important in families with a history suggestive of hereditary non-polyposis colorectal even if the Amsterdam criteria are not fulfilled. Br J Surg 84(2):233–237. doi:10.1002/bjs.1800840228

    Article  PubMed  CAS  Google Scholar 

  24. Zahary MN, Kaur G, Hassan MRA, Singh H, Naik VR, Ankathil R (2012) Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients. World J Gastroenterol 18(8):814–820. doi:10.3748/wjg.v18.i8.814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chadwick RB, Pyatt RE, Niemann TH et al (2001) Hereditary and somatic DNA mismatch repair gene mutations in sporadic endometrial carcinoma. J Med Genet 38(7):461–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mensenkamp AR, Vogelaar IP, Van Zelst-Stams WAG et al (2014) Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 146(3):643–646.e8. doi:10.1053/j.gastro.2013.12.002

    Article  PubMed  CAS  Google Scholar 

  27. Vaughn CP, Robles J, Swensen JJ et al (2010) Clinical analysis of PMS2: mutation detection and avoidance of pseudogenes. Hum Mutat 31(5):588–593. doi:10.1002/humu.21230

    Article  PubMed  CAS  Google Scholar 

  28. De Leeneer K, De Schrijver J, Clement L et al (2011) Practical tools to implement massive parallel pyrosequencing of PCR products in next generation molecular diagnostics. Plos One 6(9):e25531. doi:10.1371/journal.pone.0025531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ring KL, Bruegl AS, Allen BA et al (2016) Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Modern Pathololy 29(11):1381–1389. doi:10.1038/modpathol.2016.135

    Article  CAS  Google Scholar 

  30. Sie AS, Prins JB, van Zelst-Stams WAG, Veltman JA, Feenstra I, Hoogerbrugge N (2015) Patient experiences with gene panels based on exome sequencing in clinical diagnostics: high acceptance and low distress. Clin Genet 87(4):319–326. doi:10.1111/cge.12433

    Article  PubMed  CAS  Google Scholar 

  31. Pritchard CC, Smith C, Salipante SJ et al (2012) ColoSeq provides comprehensive Lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn 14(4):357–366. doi:10.1016/j.jmoldx.2012.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hitch K, Joseph G, Guiltinan J, Kianmahd J, Youngblom J, Blanco A (2014) Lynch syndrome patients’ views of and preferences for return of results following whole exome sequencing. J Genet Couns 23(4):539–551. doi:10.1007/s10897-014-9687-6

    Article  Google Scholar 

  33. Tutlewska K, Lubinski J, Kurzawski G (2013) Germline deletions in the EPCAM gene as a cause of Lynch syndrome—literature review. Hered Cancer Clin Pract 11(1):1–9. doi:10.1186/1897-4287-11-9

    Article  CAS  Google Scholar 

  34. Yao R, Goetzinger KR (2016) Genetic carrier screening in the twenty-first century. Clin Lab Med 36(2):277–288. doi:10.1016/j.cll.2016.01.003

    Article  PubMed  Google Scholar 

  35. De Leeneer K, Hellemans J, De Schrijver J, Baetens M, Poppe B, Van Criekinge W, De Paepe A, Coucke P, Claes K (2011) Massive parallel amplicon sequencing of the breast cancer genes BRCA1 and BRCA2: opportunities, challenges, and limitations. Hum Mutat 32(3):335–344. doi:10.1002/humu.21428

    Article  PubMed  CAS  Google Scholar 

  36. De Carvalho MCDCG, Da Silva DCG (2010) Next generation DNA sequencing and its applications in plant genomics. Ciência Rural 40(3):735–744. doi:10.1590/S0103-84782010000300040

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ-Brazil) (Grant No. E26/170.026/2008), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) (Grant Nos. 573806/2008-0, 305873/2014-8), Instituto Nacional para Controle do Cancer (http://www.inctcancer-control.com.br) and Brazilian Ministry of Heath.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angelo Martins Moreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the present work was approved by the Ethics Committee of each institution (CAAE-0254.1.001.007-11) in accordance with the ethical standards and with the Helsinki declaration.

Informed consent

Informed consent was obtained from all patients included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 291 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, B.L., Brant, A.C., Gomes, R. et al. Screening for germline mutations in mismatch repair genes in patients with Lynch syndrome by next generation sequencing. Familial Cancer 17, 387–394 (2018). https://doi.org/10.1007/s10689-017-0043-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-017-0043-5

Keywords

Navigation