Skip to main content

Advertisement

Log in

Characterization of germline mutations of MLH1 and MSH2 in unrelated south American suspected Lynch syndrome individuals

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Lynch syndrome (LS) is an autosomal dominant syndrome that predisposes individuals to development of cancers early in life. These cancers are mainly the following: colorectal, endometrial, ovarian, small intestine, stomach and urinary tract cancers. LS is caused by germline mutations in DNA mismatch repair genes (MMR), mostly MLH1 and MSH2, which are responsible for more than 85% of known germline mutations. To search for germline mutations in MLH1 and MSH2 genes in 123 unrelated South American suspected LS patients (Bethesda or Amsterdam Criteria) DNA was obtained from peripheral blood, and PCR was performed followed by direct sequencing in both directions of all exons and intron–exon junctions regions of the MLH1 and MSH2 genes. MLH1 or MSH2 pathogenic mutations were found in 28.45% (34/123) of the individuals, where 25/57 (43.85%) fulfilled Amsterdam I, II and 9/66 (13.63%) the Bethesda criteria. The mutations found in both genes were as follows: nonsense (35.3%), frameshift (26.47%), splicing (23.52%), and missense (9%). Thirteen alterations (35.14%) were described for the first time. The data reported in this study add new information about MLH1 and MSH2 gene mutations and contribute to better characterize LS in Brazil, Uruguay and Argentina. The high rate of novel mutations demonstrates the importance of defining MLH1 and MSH2 mutations in distinct LS populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Talseth-Palmer BA, McPhillips M, Groombridge C, Spigelman A, Scott RJ (2010) MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer. Hered Cancer Clin Pract 8:5

    Article  PubMed  Google Scholar 

  2. Lynch HT, Shaw T, Lynch J, Grady W (2005) Histórico do câncer colorretal hereditário sem polipose: Síndrome de Lynch. In: Rossi B, Nakagawa W, Ferreira F, Aguiar Junior S, Lopes A (eds) Câncer de cólon, reto e ânus. Lemar/Tecmedd, pp 575–593

  3. Chialina SG, Fornes C, Landi C, de la Vega Elena CD, Nicolorich MV, Dourisboure RJ, Solano A, Solis EA (2006) Microsatellite instability analysis in hereditary non-polyposis colon cancer using the Bethesda consensus panel of microsatellite markers in the absence of proband normal tissue. BMC Med Genet 7:1–5

    Article  Google Scholar 

  4. Vasen HF, Mecklin JP, Khan PM, Lynch HT (1991) The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425

    Article  PubMed  CAS  Google Scholar 

  5. Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456

    Article  PubMed  CAS  Google Scholar 

  6. Rodriguez-Bigas MA, Boland CR, Hamilton SR et al (1997) A national cancer institute workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89:1758–1762

    Article  PubMed  CAS  Google Scholar 

  7. Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268

    Article  PubMed  CAS  Google Scholar 

  8. Yap HL, Chieng WS, Lim JR et al (2009) Recurring MLH1 deleterious mutations in unrelated Chinese Lynch syndrome families in Singapore. Fam Cancer 8:85–94

    Article  PubMed  CAS  Google Scholar 

  9. Da Silva FC, Dominguez MV, Ferreira FO et al (2009) Mismatch repair genes in Lynch syndrome: a review. São Paulo Med J 127:46–51

    Article  PubMed  Google Scholar 

  10. Ou J, Niessen RC, Lützen A et al (2007) Functional analysis helps to clarify the clinical importance of unclassified variants in DNA mismatch repair genes. Hum Mutat 28:1047–1054

    Article  PubMed  CAS  Google Scholar 

  11. Ou J, Niessen RC, Vonk J et al (2008) A database to support the interpretation of human mismatch repair gene variants. Hum Mutat 29:1337–1341

    Article  PubMed  CAS  Google Scholar 

  12. Couch FJ, Rasmussen LJ, Hofstra R et al (2008) Assessment of functional effects of unclassified genetic variants. Hum Mutat 29:1314–1326

    Article  PubMed  CAS  Google Scholar 

  13. Baudi F, Fersini G, Lavecchia A et al (2005) A novel missense germline mutation in exon 2 of the hMSH2 gene in a HNPCC family from Southern Italy. Cancer Lett 223:285–291

    Article  PubMed  CAS  Google Scholar 

  14. Dominguez MV, Bastos EP, Santos EM et al (2008) Two new MLH1 germline mutations in Brazilian Lynch syndrome families. Int J Colorectal Dis 23:1263–1264

    Article  PubMed  CAS  Google Scholar 

  15. Greenblatt MS, Brody LC, Foulkes WD et al (2008) Locus-specific database and recommendations to strengthen their contribution to the classification of variants in cancer susceptibility genes. Hum Mutat 29:1273–1281

    Article  PubMed  CAS  Google Scholar 

  16. Tunca B, Pedroni M, Cecener G et al (2010) Analysis of mismatch repair gene mutations in Turkish HNPCC patients. Fam Cancer 9(3):365–376

    Article  PubMed  CAS  Google Scholar 

  17. Mangold E, Pagenstecher C, Friedl W et al (2005) Tumours from MSH2 mutation carriers show loss of MSH2 expression but many tumours from MLH1 mutation carriers exhibit weak positive MLH1 staining. J Pathol 207:385–395

    Article  PubMed  CAS  Google Scholar 

  18. Martínez-Bouzas C, Beristain E, Ojembarrena E et al (2009) A study on MSH2 and MLH1 mutations in hereditary nonpolyposis colorectal cancer families from the Basque Country, describing four new germline mutations. Fam Cancer 8:533–539

    Article  PubMed  Google Scholar 

  19. Tang R, Hsiung C, Wang JY et al (2009) Germ line MLH1 and MSH2 mutations in Taiwanese Lynch syndrome families: characterization of a founder genomic mutation in the MLH1 gene. Clin Genet 75:334–345

    Article  PubMed  CAS  Google Scholar 

  20. Pineda M, González S, Lázaro C et al (2010) Detection of genetic alterations in hereditary colorectal cancer screening. Mutat Res 693(1–2):19–31

    PubMed  CAS  Google Scholar 

  21. Perera T, Wijesuriya RE, Suraweera PH et al (2008) Prevalence of colorectal cancer and survival in patients from the Gampaha District, North Colombo region. Ceylon Med J 53:17–21

    Article  PubMed  Google Scholar 

  22. Nyström-Lahti M, Wu Y, Moisio AL et al (1996) DNA mismatch repair gene mutations in 55 kindreds with verified or putative hereditary non-polyposis colorectal cancer. Hum Mol Genet 5:763–769

    Article  PubMed  Google Scholar 

  23. [MMR] Mismatch Repair Genes Variant Database (2009) Data base. Available from: URL:http://www.med.mun.ca/mmrvariants (12 Jul 2009)

  24. Rossi BM, Lopes A, Oliveira Ferreira F et al (2002) hMLH1 and hMSH2 gene mutation in Brazilian families with suspected hereditary nonpolyposis colorectal cancer. Ann Surg Oncol 9:555–561

    PubMed  Google Scholar 

  25. Sarroca C, Valle AD, Fresco R et al (2005) Frequency of hereditary non-polyposis colorectal cancer among Uruguayan patients with colorectal cancer. Clin Genet 68:80–87

    Article  PubMed  CAS  Google Scholar 

  26. Giraldo A, Gómez A, Salguero G et al (2005) MLH1 and MSH2 mutations in Colombian families with hereditary nonpolyposis colorectal cancer (Lynch syndrome)- description of four novel mutations. Fam Cancer 4:285–290

    Article  PubMed  CAS  Google Scholar 

  27. Olilla S, Bebek DD, Jiricny J et al (2008) Mechanisms of pathogenicity in Human MSH2 missense mutants. Hum Mutat 29:1355–1363

    Article  Google Scholar 

  28. Lastella P, Surdo NC, Resta N et al (2006) In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects. BMC Genomics 7:243

    Article  PubMed  Google Scholar 

  29. Peltomäki P, Vasen HFA (1997) The international collaborative group on hereditary nonpolyposis colorectal cancer. Mutations predisposing to hereditary nonpolyposis colorectal cancer: Database and results of a collaborative study. Gastroenterology 113:1146–1158

    Article  PubMed  Google Scholar 

  30. Apessos A, Mihalatos M, Danielidis I et al (2005) hMSH2 is the most commonly mutated MMR gene in a cohort of Greek HNPCC patients. Br J Cancer 92:396–404

    PubMed  CAS  Google Scholar 

  31. Sjöblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  32. [INSIGHT] International Society of Hereditary Gastrointestinal Cancer (2009) Data base. Available from: URL: http://www.insight-group.org/ (12 Jul 2009)

  33. Rouleau E, Lefol C, Bourdon V et al (2009) Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome. Hum Mutat 30:867–875

    Article  PubMed  CAS  Google Scholar 

  34. Isidro G, Veiga I, Matos P et al (2000) Four novel MSH2/MLH1 gene mutations in Portuguese HNPCC families. Hum Mutat 15:116

    Article  PubMed  CAS  Google Scholar 

  35. Lage PA, Albuquerque C, Sousa RG et al (2004) Association of colonic and endometrial carcinomas in Portuguese families with hereditary nonpolyposis colorectal carcinoma significantly increases the probability of detecting a pathogenic mutation in mismatch repair genes, primarily the MSH2 gene. Cancer 101:172–177

    Article  PubMed  CAS  Google Scholar 

  36. Ewald J, Rodrigue CM, Mourra N et al (2007) Immunohistochemical staining for mismatch repair proteins, and its relevance in the diagnosis of hereditary non-polyposis colorectal cancer. British J surg 94:1020–1027

    Article  CAS  Google Scholar 

  37. Terdiman JP, Levin TR, Allen BA et al (2002) Hereditary nonpolyposis colorectal cancer in young colorectal cancer patients: high-risk clinic versus population-based registry. Gastroenterology 122:940–947

    Article  PubMed  CAS  Google Scholar 

  38. Rodrigues FC, Kawasaki-Oyama RS, Fo JF et al (2003) Analysis of CDKN1A polymorphisms: markers of cancer susceptibility? Cancer Genet Cytogenet 142:92–98

    Article  PubMed  CAS  Google Scholar 

  39. Martinez SL, Kolodner RD (2010) Functional analysis of human mismatch repair gene mutations identifies weak alleles and polymorphisms capable of polygenic interactions. PNAS 107:5070–5075

    Article  PubMed  CAS  Google Scholar 

  40. Kámory E, Tanyi M, Kolacsek O et al (2006) Two germline alterations in mismatch repair genes found in a HNPCC patient with poor family history. Pathol Oncol Res 12:228–233

    Article  PubMed  Google Scholar 

  41. Wimmer K, Etzler J (2008) Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet 124:105–122

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - 05/05155-6) and Instituto Nacional de Ciência e Tecnologia em Oncogenômica (INCITO - 2008/57887-9) for financial support.

Conflicts of interest

We have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mev Dominguez Valentin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentin, M.D., Silva, F.C.d., Santos, E.M.M.d. et al. Characterization of germline mutations of MLH1 and MSH2 in unrelated south American suspected Lynch syndrome individuals. Familial Cancer 10, 641–647 (2011). https://doi.org/10.1007/s10689-011-9461-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-011-9461-y

Keywords

Navigation