Skip to main content

Advertisement

Log in

Selection of patients with germline MLH1 mutated Lynch syndrome by determination of MLH1 methylation and BRAF mutation

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Lynch syndrome is one of the most common hereditary colorectal cancer (CRC) syndrome and is caused by germline mutations of MLH1, MSH2 and more rarely MSH6, PMS2, MLH3 genes. Whereas the absence of MSH2 protein is predictive of Lynch syndrome, it is not the case for the absence of MLH1 protein. The purpose of this study was to develop a sensitive and cost effective algorithm to select Lynch syndrome cases among patients with MLH1 immunohistochemical silencing. Eleven sporadic CRC and 16 Lynch syndrome cases with MLH1 protein abnormalities were selected. The BRAF c.1799T> A mutation (p.Val600Glu) was analyzed by direct sequencing after PCR amplification of exon 15. Methylation of MLH1 promoter was determined by Methylation-Sensitive Single-Strand Conformation Analysis. In patients with Lynch syndrome, there was no BRAF mutation and only one case showed MLH1 methylation (6%). In sporadic CRC, all cases were MLH1 methylated (100%) and 8 out of 11 cases carried the above BRAF mutation (73%) whereas only 3 cases were BRAF wild type (27%). We propose the following algorithm: (1) no further molecular analysis should be performed for CRC exhibiting MLH1 methylation and BRAF mutation, and these cases should be considered as sporadic CRC; (2) CRC with unmethylated MLH1 and negative for BRAF mutation should be considered as Lynch syndrome; and (3) only a small fraction of CRC with MLH1 promoter methylation but negative for BRAF mutation should be true Lynch syndrome patients. These potentially Lynch syndrome patients should be offered genetic counselling before searching for MLH1 gene mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

HNPCC:

Hereditary nonpolyposis colorectal cancer

MMR:

Mismatch repair

MSI:

Microsatellite instability

MSI-H:

MSI-high

IHC:

Immunohistochemistry

References

  1. Aaltonen LA, Salovaara R, Kristo P et al (1998) Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med 338:1481–1487

    Article  PubMed  CAS  Google Scholar 

  2. de la Chapelle A (2004) Genetic predisposition to colorectal cancer. Nat Rev Cancer 10:769–780

    Article  CAS  Google Scholar 

  3. Marra G, Boland C (1995) Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst 87:1114–1125

    Article  PubMed  CAS  Google Scholar 

  4. Peltomaki P, Lothe RA, Aaltonen LA et al (1993) Microsatellite instability is associated with tumours that characterise the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 53:5853–5855

    PubMed  CAS  Google Scholar 

  5. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    Article  PubMed  CAS  Google Scholar 

  6. Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  7. Burgart LJ (2005) Testing for defective DNA mismatch repair in colorectal carcinoma: a practical guide. Arch Pathol Lab Med 129:1385–1389

    PubMed  CAS  Google Scholar 

  8. Kane MF, Loda M, Gaida GM et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumours and mismatch repair defective human tumor cell lines. Cancer Res 57:808–811

    PubMed  CAS  Google Scholar 

  9. Jass JR, Do KA, Simms LA et al (1998) Morphology of sporadic colorectal cancer with DNA replication errors. Gut 42:673–679

    Article  PubMed  CAS  Google Scholar 

  10. Jass JR, Walsh MD, Barker M et al (2002) Distinction between familial and sporadic forms of colorectal cancer showing DNA microsatellite instability. Eur J Cancer 38:858–866

    Article  PubMed  CAS  Google Scholar 

  11. Young J, Simms LA, Biden KG et al (2001) Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol 159:2107–2116

    PubMed  CAS  Google Scholar 

  12. Gryfe R, Kim H, Hsieh ET et al (2000) Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Eng J Med 342:69–77

    Article  CAS  Google Scholar 

  13. Vasen HF, Mecklin JP, Khan PM et al (1991) The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425

    Article  PubMed  CAS  Google Scholar 

  14. Vasen HF, Watson P, Mecklin JP et al (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology 116:1453–1456

    Article  PubMed  CAS  Google Scholar 

  15. Rodriguez-Bigas MA, Boland CR, Hamilton SR et al (1997) A National Cancer Institute workshop on hereditary colorectal cancer syndrome: meeting highlights and Bethesda Guidelines. J Natl Cancer Inst 89:1758–1762

    Article  PubMed  CAS  Google Scholar 

  16. Jass JR (2004) HNPCC and sporadic MSI-H colorectal cancer: a review of the morphological similarities and differences. Fam Cancer 3:93–100

    Article  PubMed  CAS  Google Scholar 

  17. Stormorken AT, Bowitz-Lothe IM, Noren T et al (2005) Immunohistochemistry identifies carriers of mismatch repair gene defects causing hereditary nonpolyposis colorectal cancer. J Clin Oncol 23:4705–4712

    Article  PubMed  CAS  Google Scholar 

  18. Hampel H, Frankel WL, Martin E et al (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352:1851–1860

    Article  PubMed  CAS  Google Scholar 

  19. Bouzourene H, Taminelli L, Chaubert P et al (2006) A cost-effective algorithm for hereditary nonpolyposis colorectal cancer detection. Am J Clin Pathol 125:823–831

    Article  PubMed  CAS  Google Scholar 

  20. Potocnik U, Glavac D, Golouh R et al (2001) Causes of microsatellite instability in colorectal tumors: implications for hereditary non-polyposis colorectal cancer screening. Cancer Genet Cytogenet 126:85–96

    Article  PubMed  CAS  Google Scholar 

  21. Herman JG, Umar A, Polyak K et al (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95:6870–6875

    Article  PubMed  CAS  Google Scholar 

  22. Wheeler JM, Loukola A, Aaltonen LA et al (2000) The role of hypermethylation of the hhMLH1 promoter region inHNPCC versus MSI+ sporadic colorectal cancers. J Med Genet 37:588–592

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto H, Min Y, Itoh F et al (2002) Differential involvement of the hypermethylator phenotype in hereditary and sporadic colorectal cancers with high-frequency microsatellite instability. Genes Chromosom Cancer 33:322–325

    Article  PubMed  CAS  Google Scholar 

  24. Menigatti M, Di Gregorio C, Borghi F et al (2001) Methylation pattern of different regions of the hMLH1 promoter and silencing of gene expression in hereditary and sporadic colorectal cancer. Genes Chromosom Cancer 31:357–361

    Article  PubMed  CAS  Google Scholar 

  25. Rajagopalan H, Bardelli A, Lengauer C et al (2002) Tumorigenesis: RAF/RAS oncogenes and mismatchrepair status. Nature 418:934

    Article  PubMed  CAS  Google Scholar 

  26. Domingo E, Espin E, Armengol M et al (2004) Activated BRAF targets proximal colon tumors with mismatch repair deficiency and hMLH1 inactivation. Genes Chromosom Cancer 39:138–142

    Article  PubMed  CAS  Google Scholar 

  27. Koinuma K, Shitoh K, Miyakura Y et al (2004) Mutations of BRAF are associated with extensive hhMLH1 promoter methylation in sporadic colorectal carcinomas. Int J Cancer 108:237–242

    Article  PubMed  CAS  Google Scholar 

  28. Wang L, Cunningham JM, Winters JL et al (2003) BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res 63:5209–5212

    PubMed  CAS  Google Scholar 

  29. McGivern A, Wynter CV, Whitehall VL et al (2004) Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer 3:101–107

    Article  PubMed  CAS  Google Scholar 

  30. Benhattar J, Clément G (2004) Methylation-sensitive single-strand conformation analysis: a rapid method to screen for and analyze DNA methylation. Methods Mol Biol 287:181–193

    PubMed  CAS  Google Scholar 

  31. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932

    Article  PubMed  CAS  Google Scholar 

  32. Lynch HT, Boland CR, Gong G et al (2006) Phenotypic and genotypic heterogeneity in the Lynch syndrome: diagnostic, surveillance and management implications. Eur J Hum Genet 14:390–402

    Article  PubMed  CAS  Google Scholar 

  33. Jass JR (2006) Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol 12:4943–4950

    PubMed  CAS  Google Scholar 

  34. Salovaara R, Loukola A, Kristo P et al (2000) Population-based molecular detection of hereditary nonpolyposis colorectal cancer. J Clin Oncol 18:2193–2200

    PubMed  CAS  Google Scholar 

  35. Jarvinen HJ, Aarnio M, Mustonen H et al (2000) Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 118:829–834

    Article  PubMed  CAS  Google Scholar 

  36. de Jong AE, Hendriks YM, Kleibeuker JH et al (2006) Decrease in mortality in Lynch syndrome families because of surveillance. Gastroenterology 130:665–671

    Article  PubMed  Google Scholar 

  37. de la Chapelle A (2002) Microsatellite instability phenotype of tumors: genotyping or immunohistochemistry? The jury is still out. J Clin Oncol 20:897–899

    Google Scholar 

  38. Losi L, Di Gregorio C, Pedroni M et al (2005) Molecular genetic alterations and clinical features in early-onset colorectal carcinomas and their role for the recognition of hereditary cancer syndromes. Am J Gastroenterol 100:2280–2287

    Article  PubMed  CAS  Google Scholar 

  39. Cunningham JM, Christensen ER, Tester DJ et al (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58:3455–3460

    PubMed  CAS  Google Scholar 

  40. Kuismanen SA, Holmberg MT, Salovaara R et al (2000) Genetic and epigenetic modification of hMLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am J Pathol 156:1773–1779

    PubMed  CAS  Google Scholar 

  41. Deng G, Peng E, Gum J, Terdiman J et al (2002) Methylation of hhMLH1 promoter correlates with the gene silencing with a region-specific manner in colorectal cancer. Br J Cancer 86:574–579

    Article  PubMed  CAS  Google Scholar 

  42. Kumar R, Angelini S, Hemminki K (2003) Activating BRAF and N-Ras mutations in sporadic primary melanomas: an inverse association with allelic loss on chromosome 9. Oncogene 22:9217–9224

    Article  PubMed  CAS  Google Scholar 

  43. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  44. Deng G, Bell I, Crawley S et al (2004) BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 10:191–195

    Article  PubMed  CAS  Google Scholar 

  45. Loughrey MB, Waring PM, Tan A et al (2007) Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer. Fam Cancer 6:301–310

    Article  PubMed  CAS  Google Scholar 

  46. Bettstetter M, Dechant S, Ruemmele P et al (2007) Distinction of hereditary nonpolyposis colorectal cancer and sporadic microsatellite-unstable colorectal cancer through quantification of MLH1 methylation by real-time PCR. Clin Cancer Res 13:3221–3228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanifa Bouzourene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouzourene, H., Hutter, P., Losi, L. et al. Selection of patients with germline MLH1 mutated Lynch syndrome by determination of MLH1 methylation and BRAF mutation. Familial Cancer 9, 167–172 (2010). https://doi.org/10.1007/s10689-009-9302-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-009-9302-4

Keywords

Navigation