Skip to main content
Log in

Orthoscalar quiver representations corresponding to extended Dynkin graphs in the category of Hilbert spaces

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

It is known that finitely representable quivers correspond to Dynkin graphs and tame quivers correspond to extended Dynkin graphs. In an earlier paper, the authors generalized some of these results to locally scalar (later renamed to orthoscalar) quiver representations in Hilbert spaces; in particular, an analog of the Gabriel theorem was proved. In this paper, we study the relationships between indecomposable representations in the category of orthoscalar representations and indecomposable representations in the category of all quiver representations. For the quivers corresponding to extended Dynkin graphs, the indecomposable orthoscalar representations are classified up to unitary equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Roiter, “Matrix problems,” in: Proc. ICM Helsinki, 1978, Acad. Sci. Fennica, Helsinki, 1980, 319–322.

    Google Scholar 

  2. S. A. Kruglyak and A. V. Roiter, “Locally scalar graph representations in the category of Hilbert spaces,” Funkts. Anal. Prilozhen., 39:2 (2005), 13–30; English transl.: Functional Anal. Appl., 39:2 (2005), 91–105.

    MathSciNet  Google Scholar 

  3. P. Gabriel, “Unzerlegbare Darstellungen I,” Manuscripta Math., 6 (1972), 71–107.

    Article  MathSciNet  Google Scholar 

  4. S. A. Kruglyak, V. I. Rabanovich, and Yu. S. Samoilenko, “On sums of projections,” Funkts. Anal. Prilozhen., 36:3 (2002), 20–35; English transl.: Functional Anal. Appl., 36:3 (2002), 182–195.

    MathSciNet  Google Scholar 

  5. V. L. Ostrovskyi and Yu. S. Samoilenko, “On spectral theorems for families of linearly connected selfadjoint operators with prescribed spectra associated with extended Dynkin graphs,” Ukrain. Mat. Zh., 58:11 (2006), 1556–1570; English transl.: Ukrain. Math. J., 58:11 (2006), 1768–1785.

    MathSciNet  Google Scholar 

  6. S. Albeverio, V. Ostrovskyi, and Yu. Samoilenko, “On functions on graphs and representations of a certain class of *-algebras,” J. Algebra, 308:2 (2007), 567–582.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. A. Kruglyak, L. A. Nazarova, and A. V. Roiter, “Orthoscalar quiver representations in the category of Hilbert spaces,” Zap. Nauchn. Sem. POMI, 338 (2006), 180–199; English transl.: J. Math. Sci. (N. Y.), 145:1 (2007), 4793–4804.

    MATH  Google Scholar 

  8. A. V. Roiter, “Boxes with involution,” in: Representations and quadratic forms, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1979, 124–126, 155.

    Google Scholar 

  9. J. Dixmier, Les C*-algèbres et leurs représentations, Éditions Jacques Gabay, Paris, 1996.

    Google Scholar 

  10. V. G. Kac, “Infinite root systems, representations of graphs and invariant theory, II,” J. Algebra, 78 (1982), 141–162.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. M. Gelfand and V. A. Ponomarev, “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space,” in: Hilbert Space Operators and Operator Algebra (Proc. Intern. Conf.), Tihany, Hungary, 1970), Colloq. Math. Soc. J. Bolyai, vol. 5, 1972, 163–237.

    MathSciNet  Google Scholar 

  12. I. K. Redchuk and A. V. Roiter, “Singular locally scalar representations of quivers in Hilbert spaces and separating functions,” Ukrain. Mat. Zh., 56:6 (2004), 796–809; English transl.: Ukrain. Math. J., 56:6 (2004), 947–963.

    MATH  MathSciNet  Google Scholar 

  13. W. Crawley-Boevey, Lectures on Representations of Quivers, Preprojective Algebras and Deformations of Quotient Singularities, http://www.maths.leeds.ac.uk/-pmtwc/dmvlecs.pdf.

  14. V. L. Ostrovskyi and Yu. S. Samoilenko, “Introduction to the theory of representations of finitely presented *-algebras, I,” Rev. Math. Math. Phys., 11 (1999), 1–261.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. S. Mellit, “When the sum of three partial reflections is equal to zero,” Ukrain. Mat. Zh., 55:9 (2003), 1277–1283; English transl.: Ukrain. Math. J., 55:9 (2003), 1542–1550.

    MATH  MathSciNet  Google Scholar 

  16. V. L. Ostrovskyi, “Representation of an algebra associated with Dynkin graph E 7,” Ukrain. Mat. Zh., 56:9 (2004), 1193–1204; English transl.: Ukrain. Math. J., 56:9 (2004), 1417–1428.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kruglyak.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 44, No. 2, pp. 57–73, 2010

Original Russian Text Copyright © by S. A. Kruglyak, L. A. Nazarova, and A. V. Roiter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglyak, S.A., Nazarova, L.A. & Roiter, A.V. Orthoscalar quiver representations corresponding to extended Dynkin graphs in the category of Hilbert spaces. Funct Anal Its Appl 44, 125–138 (2010). https://doi.org/10.1007/s10688-010-0016-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-010-0016-z

Key words

Navigation