Skip to main content
Log in

Graded quiver varieties and singularities of normalized R-matrices for fundamental modules

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We present a simple unified formula expressing the denominators of the normalized R-matrices between the fundamental modules over the quantum loop algebras of type \({\mathsf {ADE} }\). It has an interpretation in terms of representations of Dynkin quivers and can be proved in a unified way using geometry of the graded quiver varieties. As a by-product, we obtain a geometric interpretation of Kang–Kashiwara–Kim’s generalized quantum affine Schur–Weyl duality functor when it arises from a family of the fundamental modules. We also study several cases when the graded quiver varieties are isomorphic to unions of the graded nilpotent orbits of type \(\mathsf {A} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [24], the affinization is defined in terms of the Chevalley type generators of the algebra \(U'_q({\widehat{{\mathfrak {g}}}})\). One can easily see that it coincides with our affinization in Definition 2.4 under the isomorphism \(U_{q}(L{\mathfrak {g}}) \cong U_{q}^{\prime }({\widehat{{\mathfrak {g}}}}) / \langle q^{c} -1 \rangle \) in [3].

References

  1. Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. Res. Inst. Math. Sci. 33(5), 839–867 (1997)

    Article  MathSciNet  Google Scholar 

  2. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165(3), 555–568 (1994)

    Article  MathSciNet  Google Scholar 

  4. Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 2002(7), 357–382 (2002)

    Article  MathSciNet  Google Scholar 

  5. Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, pp. 59–78. Amer. Math. Soc. Providence (1995)

  6. Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras. Represent. Theory 5, 191–223 (2001)

    Article  MathSciNet  Google Scholar 

  7. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhauser Boston, Inc., Boston (1997)

    MATH  Google Scholar 

  8. Date, E., Okado, M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_n\). Int. J. Mod. Phys. A 9(3), 399–417 (1994)

    Article  MathSciNet  Google Scholar 

  9. Frenkel, E., Mukhin, E.: Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216(1), 23–57 (2001)

    Article  MathSciNet  Google Scholar 

  10. Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformations of \({\cal{W}}\)-algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, pp. 163–205. Amer. Math. Soc. Providence (1999)

  11. Fujita, R.: Affine highest weight categories and quantum affine Schur–Weyl duality of Dynkin quiver types. Preprint. arXiv:1710.11288

  12. Fujita, R.: Geometric realization of Dynkin quiver type quantum affine Schur–Weyl duality. Int. Math. Res. Not. (2018). https://doi.org/10.1093/imrn/rny226

    Article  MATH  Google Scholar 

  13. Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6, 71–103 (1972); correction, ibid. 6, 309 (1972)

  14. Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, pp. 1–71. Springer, Berlin (1980)

  15. Ginzburg, V., Reshetikhin, N., Vasserot, E.: Quantum groups and flag varieties. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), Contemp. Math., no. 175, pp. 101–130. Amer. Math. Soc. Providence (1994)

  16. Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62(3), 339–389 (1987)

    Article  MathSciNet  Google Scholar 

  17. Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  18. Hernandez, H., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, II. Duke Math. J. 164(8), 1549–1602 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. Invent. Math. 211(2), 591–685 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-J.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, III. Proc. Lond. Math. Soc. (3) 111(2), 420–444 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-J.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, IV. Sel. Math. (N.S.) 22(4), 1987–2015 (2016)

    Article  MathSciNet  Google Scholar 

  23. Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J. 73(2), 383–413 (1994)

    Article  MathSciNet  Google Scholar 

  24. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002)

    Article  MathSciNet  Google Scholar 

  25. Kashiwara, M., Kim, M., Oh, S.-J.: Monoidal categories of modules over quantum affine algebras of type A and B. Proc. Lond. Math. Soc. 118, 43–77 (2019)

    Article  MathSciNet  Google Scholar 

  26. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Cluster algebra structures on module categories over quantum affine algebras. Preprint. arXiv:1904.01264

  27. Kashiwara, M., Oh, S.-J.: Categorical relations between Langlands dual quantum affine algebras: doubly laced types. J. Algebr. Comb. 49(4), 401–435 (2019)

    Article  MathSciNet  Google Scholar 

  28. Kato, S.: Poincare–Birkhoff–Witt bases and Khovanov–Lauda–Rouquier algebras. Duke Math. J. 163(3), 619–663 (2014)

    Article  MathSciNet  Google Scholar 

  29. Keller, B., Scherotzke, S.: Graded quiver varieties and derived categories. J. Reine Angew. Math. 713, 85–127 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  Google Scholar 

  31. Leclerc, B., Plamondon, P.-G.: Nakajima varieties and repetitive algebras. Publ. Res. Inst. Math. Sci. 49(3), 531–561 (2013)

    Article  MathSciNet  Google Scholar 

  32. Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001)

    Article  MathSciNet  Google Scholar 

  33. Nakajima, H.: Quiver varieties and tensor products. Invent. Math. 146(2), 399–449 (2001)

    Article  MathSciNet  Google Scholar 

  34. Nakajima, H.: Extremal weight modules of quantum affine algebras. In: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40, pp. 343–369. Math. Soc. Japan, Tokyo (2004)

  35. Oh, S.-J.: The denominators of normalized \(R\)-matrices of types \(A_{2n-1}^{(2)}\), \(A_{2n}^{(2)}\), \(B_n^{(1)}\) and \(D_{n+1}^{(2)}\). Publ. Res. Inst. Math. Sci. 51(4), 709–744 (2015)

    Article  MathSciNet  Google Scholar 

  36. Oh, S.-J., Scrimshaw, T.: Categorical relations between Langlands dual quantum affine algebras: exceptional cases. Commun. Math. Phys. 368(1), 295–367 (2019)

    Article  MathSciNet  Google Scholar 

  37. Oh, S.-J., Scrimshaw, T.: Correction to: Categorical relations between Langlands dual quantum affine algebras: exceptional cases. Commun. Math. Phys. 371(2), 833–837 (2019)

    Article  MathSciNet  Google Scholar 

  38. Rouquier, R.: 2-Kac–Moody algebras. Preprint. arXiv:0812.5023

  39. Varagnolo, M., Vasserot, E.: Standard modules of quantum affine algebras. Duke Math. J. 111(3), 509–533 (2002)

    Article  MathSciNet  Google Scholar 

  40. Varagnolo, M., Vasserot, E.: Canonical bases and KLR-algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Se-jin Oh for his interest in this paper and for answering the author’s questions on his papers. The author was supported by Grant-in-Aid for JSPS Research Fellow (No. 18J10669), and by JSPS Overseas Research Fellowships during the revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Fujita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, R. Graded quiver varieties and singularities of normalized R-matrices for fundamental modules. Sel. Math. New Ser. 28, 2 (2022). https://doi.org/10.1007/s00029-021-00715-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00715-5

Keywords

Mathematics Subject Classification

Navigation