Skip to main content
Log in

Disrupting the disruptors: the consequences of mutations in mobile elements for ecologically important life history traits

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Transposable elements are a nearly ubiquitous component of eukaryotic genomes. While often described as parasitic genetic elements, other evidence suggests that transposable elements can become domesticated and contribute to organismal function. There is little empirical data on the positive or negative contribution of transposable elements to organismal traits. We hypothesized that mutations in transposable element genes would have less deleterious effects than mutations in other plant genes. We conducted an assay of phenotypes associated with growth and reproduction in a collection of insertion mutation lines in Arabidopsis thaliana that disrupted the sequence of a transposable element gene. The transposable element loci were from locations dispersed across the genome, and included loci from several element families. Overall, we found that mutants in transposable element genes were similar to mutants in other types of loci for the measured traits, in most cases with a distribution of effects centered on life history trait values of wild-type plants critical to population ecology processes. If transposable elements are predominantly parasitic, their deleterious effects were not uncovered by these disruptive mutations. Further characterization of the positive, negative or neutral contribution of transposable element sequences would address unresolved questions about the contribution of transposition and selection to genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrion JR, Begun DJ, Hahn MW (2019) Patterns of transposable element variation and clinality in Drosophila. Mol Ecol 28:1523–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ågren J, Oakley CG, McKay JK, Lovell JT, Schemske DW (2013) Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc Natl Acad Sci 110(52):21077–21082

    Article  PubMed Central  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Baud et al Biorxiv (perhaps include)

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Blanc VM, Adams J (2004) Ty1 insertions in intergenic regions of the genome of Saccharomyces cerevisiae transcribed by RNA polymerase III have no detectable selective effect. FEMS Yeast Res 4:487–491

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Bouchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol 4:111–117

    Article  PubMed  Google Scholar 

  • Bousios A, Gaut BS (2016) Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. Curr Opin Plant Biol 30:123–133

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Hooykaas P (2005) An Arabidopsis hAT-like transposase is essential for plant development. Nature 436:282–284

    Article  CAS  PubMed  Google Scholar 

  • de la Chaux N, Tsuchimatsu T, Shimizu KK, Wagner A (2012) The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mobile DNA 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubin MJ, Mittelsten Scheid O, Becker C (2018) Transposons: a blessing curse. Curr Opin Plant Biol 42:23–29

    Article  CAS  PubMed  Google Scholar 

  • Elena SF, Ekunwe L, Hajela N, Oden SA, Lenski RE (1998) Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102(103):349–358

    Article  PubMed  Google Scholar 

  • Hollister JD, Smith LM, Guo Y, Ott F, Weigel D, Gaut BS (2010) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. PNAS 108:2322–2327

    Article  Google Scholar 

  • Hosaka A, Saito R, Takashima K, Sasaki T, Fu Y, Kawabe A, Ito T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T (2017) Evolution of sequence-specific anti-silencing systems in Arabidopsis. Nat Commun 8:1–10

    Article  CAS  Google Scholar 

  • Hudson ME, Lisch DR, Quail PH (2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34:453–471

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Kim J-M, Matsunaga W, Saze H, Matsui A, Endo TA, Harukawa Y, Takagi H, Yaegashi H, Masuta Y, Masuda S, Ishida J, Tanaka M, Takahashi S, Morosawa T, Toyoda T, Kakutani T, Kato A, Seki M (2016) A stress-activated transposon in Arabidopsis induces transgenerational abscisic acid insensitivity. Sci Rep 6:23181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joly-Lopez Z, Bureau TE (2014) Diversity and evolution of transposable elements in Arabidopsis. Chromosome Res 22:203–216

    Article  CAS  PubMed  Google Scholar 

  • Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel JF et al (eds) Plant genome diversity, vol 1. Springer, Wien, pp 17–34

    Chapter  Google Scholar 

  • Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kim N-S (2017) The genomes and transposable elements in plants: are they friends or foes? Genes Genom 39:359–370

    Article  CAS  Google Scholar 

  • Leonardo TE, Nuzhdin SV (2002) Intracellular battlegrounds: conflict and cooperation between transposable elements. Genet Res Camb 80:155–161

    Article  CAS  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoli DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linquist S, Cottenie K, Elliott TA, Saylor B, SC Kremer, Gregory TR (2015) Applying ecological models to communities of genetic elements: the case of neutral theory. Mol Ecol 24(13):3232–3242

    Article  PubMed  Google Scholar 

  • Lockton S, Gaut BS (2009) The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana. J Mol Evol 68:80–89

    Article  CAS  PubMed  Google Scholar 

  • Mauricio R (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat 151:20–28

    Article  CAS  PubMed  Google Scholar 

  • Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    Article  CAS  PubMed  Google Scholar 

  • Murren CJ, Kohler C, Balazs RJ, Bassett R, Beacham A, Cousins EA, Frazier A, Hill BM, Rendleman AJ, Senn LHR, Strand AE, Musselman OD (2020) Gene type and mutation position influence responses in root traits across nutrient environments. Int J Plant Sci 181(2):210–223

    Article  Google Scholar 

  • O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928–940

    Article  PubMed  Google Scholar 

  • Oberlin S, Sarazin A, Chevalier C, Voinnet O, Marí-Ordóñez A (2017) A genome-wide transcriptome and translatome of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty1/Copia retroelements. Genome Res 27:1549–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA, Colot V (2016) The Arabidopsis thaliana mobilome and its impact at the species level. eLife 5:15716

    Article  Google Scholar 

  • Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M, Durka W, Engelhardt J, Gaspar B, Gogol-Döring A, Grosse I, van Gurp TP, Heer K, Kronholm I, Lampei C, Latzel V, Mirouze M, Opgenoorth L, Paun O, Prohaska SJ, Rensing SA, Stadler PF, Trucchi E, Ullrich K, Verhoeven KJF (2017) Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol Lett 20:1576–1590

    Article  PubMed  Google Scholar 

  • Rutter MT, Wieckowski YM, Murren CJ, Strand AE (2017) Fitness effects of mutation: testing genetic redundancy in Arabidopsis thaliana. J Evol Biol 30:1124–1135

    Article  CAS  PubMed  Google Scholar 

  • Rutter MT, Roles AJ, Fenster CB (2018) Quantifying natural seasonal variation in mutation parameters with mutation accumulation lines. Ecol Evol 8:5575–5585

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutter MT, Murren CJ, Callahan HS, Bisner A, Leebens-Mack J, Wolyniak MJ, Strand AE (2019) Distributed phenomics with the unPAK project reveals the effects of mutations. Plant J. https://doi.org/10.1111/tpj.14427

    Article  PubMed  Google Scholar 

  • Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM (2018) Contribution of transposable elements in the plant’s genome. Gene 665:155–166

    Article  CAS  PubMed  Google Scholar 

  • Seymour DK, Koenig D, Hagmann D, Becker C, Weigel D (2014) Evolution of DNA methylation patterns in Brassicaceae is driven by differences in genome organizations. PLoS Genet 10:e1004785

    Article  PubMed  PubMed Central  Google Scholar 

  • Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478

    Article  CAS  PubMed  Google Scholar 

  • Underwood CJ, Henderson IR, Martienssen RA (2017) Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr Opin Plant Biol 36:135–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentine ME, Wolyniak MJ, Rutter MT (2012) Extensive phenotypic variation among allelic T-DNA inserts in Arabiopsis thaliana. PLoS ONE 7:e44981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volff J-N (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28:913–922

    Article  CAS  PubMed  Google Scholar 

  • Weng ML, Becker C, Hildebrandt J, Neumann M, Rutter MT, Shaw RG, Weigel D, Fenster CB (2019) Fine-grained analysis of spontaneous mutation spectrum and frequency in Arabidopsis thaliana. Genetics 211:703–714

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wickham H, Francois R, Henry L, Müller K (2019) dplyr: a grammar of data manipulation. Package version 0.8.1. https://CRAN.R-project.org/package=dplyr. Accessed 2019

  • Wilke CM, Adams J (1992) Fitness effects of Ty transpositions in Saccharomyces cerevisiae. Genetics 131:31–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Chang F, You C, Cui J, Zhu G, Wang L, Zheng Y, Qi J, Ma H (2015) Whole-genome DNA methylation patterns and complex association with gene structure and expression during flower development in Arabidopsis. Plant J 81:266–281

    Article  Google Scholar 

  • Yu Z, Wright SI, Bureau TE (2000) Mutator-like elements in Arabidopsis thaliana: structure, diversity and evolution. Genetics 156:2019–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Ferguson AA, Jiang N (2016) What makes up plant genomes: the vanishing line between transposable elements and genes. Biochim Biophys Acta 1859:366–380

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation for funding support (IOS-1355106 to MTR, CJM and AES, IOS-1355041 to HSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Rutter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 118 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutter, M.T., Bisner, A.M., Kohler, C. et al. Disrupting the disruptors: the consequences of mutations in mobile elements for ecologically important life history traits. Evol Ecol 34, 363–377 (2020). https://doi.org/10.1007/s10682-020-10038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-020-10038-0

Keywords

Navigation