Skip to main content
Log in

Sibling Drosophila species (Drosophila leontia and Drosophila kikkawai) show divergence for thermotolerance along a latitudinal gradient

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Understanding adaptations to climatic stresses has been a longstanding issue in evolutionary biology. Clinal patterns for stress tolerance traits at interspecific as well as intraspecific levels provide an opportunity to comprehend the adaptive divergence acquired in the closely related species among different geographical populations. In the present study, we investigated the geographical differences for basal as well as induced thermal tolerance (hardening) in two sympatric sibling Drosophila species (D. leontia and D. kikkawai) along a latitudinal transect (South: 8°06′N to North: 32°40′N) across India. A higher relative abundance of D. leontia was observed in the southern localities (tropical) while D. kikkawai was more abundant in the northern localities (sub-tropical). Both the species showed a negative cline for heat tolerance along the latitude i.e. following a trend of increased tolerance level in the southern populations compared to northern ones. Contrarily, a positive cline for cold tolerance was evident in D. kikkawai, while such intra-specific population differences were non-significant in D. leontia. Further, we found the evidence for heat and cold hardening effects only in D. kikkawai. In D. kikkawai, higher hardening capacity for heat as well as cold tolerance was observed in northern populations compared to southern populations, despite lower basal heat tolerance in northern populations. In conclusion, clinal patterns for hardening capacity for heat and cold tolerance in D. kikkawai while absence of the same in D. leontia suggest divergent evolutionary history of these two sympatric sibling species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc B 267:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Angilletta MJ, Wilson RS, Navas CA, James RS (2003) Trade-offs and the evolution of thermal reaction norms. Trends Ecol Evol 18:234–240

    Article  Google Scholar 

  • Arthur AL, Weeks AR, Sgro CM (2008) Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia. J Evol Biol 21:1470–1479

    Article  CAS  PubMed  Google Scholar 

  • Berrigan D, Hoffmann AA (1998) Correlations between measures of heat resistance and acclimation in two species of Drosophila and their hybrids. Biol J Linn Soc 64:449–462

    Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv in Insect Phys 33:51–152

    Google Scholar 

  • Climatological tables of observatories in India (2010) Indian Meteorological Department, pp 1–782

  • Cooper BS, Czarnoleski M, Angilletta MJ (2010) Acclimation of thermal physiology in natural populations of Drosophila melanogaster: a test of an optimality model. J Evol Biol 23:2346–2355

    Article  CAS  PubMed  Google Scholar 

  • Cooper BS, Tharp JM, Jernberg J II, Angilletta MJ (2012) Developmental plasticity of thermal tolerances in temperate and subtropical populations of Drosophila melanogaster. J Therm Biol 37:211–216

    Article  Google Scholar 

  • Cossins AR, Bowler K (1987) Temperature biology of animals. Chapman and Hall, New York

    Book  Google Scholar 

  • Gibert P, Huey RB (2001) Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Physiol Biochem Zool 74:429–434

    Article  CAS  PubMed  Google Scholar 

  • Guerra D, Cavicchi S, Krebs RA, Loeschcke V (1997) Resistance to heat and cold stress in Drosophila melanogaster: intra and inter population variation in relation to climate. Genet Sel Evol 29:497–510

    Article  PubMed Central  Google Scholar 

  • Hoffmann AA (1990) Acclimation for desiccation resistance in Drosophila melanogaster and the association between acclimation responses and genetic variation. J Insect Physiol 36:885–891

    Article  Google Scholar 

  • Hoffmann AA (2010) Physiological climatic limits in Drosophila: patterns and predictions. J Exp Biol 213:870–880

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Watson M (1993) Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am Nat 142:93–113

    Article  Google Scholar 

  • Hoffmann AA, Weeks AR (2007) Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica 129:133–147

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Anderson A, Hallas R (2002) Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol Lett 5:614–618

    Article  Google Scholar 

  • Hoffmann AA, Sørensen JG, Loeschcke V (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 28:175–216

    Article  Google Scholar 

  • Hoffmann AA, Shirriffs J, Scott M (2005) Relative importance of plastic vs. genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct Ecol 19:222–227

    Article  Google Scholar 

  • Karan D, Parkash R (1998) Desiccation and starvation resistance exhibit opposite latitudinal clines in Indian populations of Drosophila kikkawai. Ecol Entomol 23:391–396

    Article  Google Scholar 

  • Kellermann V, Heerwaarden VB, Sgrò CM, Hoffmann AA (2009) Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:1244–1246

    Article  CAS  PubMed  Google Scholar 

  • Kellermann V, Overgaard J, Hoffmann AA, Flojgaard C, Svenning JC, Loeschcke V (2012) Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc Nat Acad Sci (USA) 109:16228–16233

    Article  CAS  Google Scholar 

  • Kellett M, Hoffman AA, McKechnie SW (2005) Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct Ecol 19:853–858

    Article  Google Scholar 

  • Kimura MT (1988) Adaptations to temperate climates and evolution of overwintering strategies in the Drosophila melanogaster species group. Evolution 42:1288–1297

    Article  Google Scholar 

  • Lemeunier F, David JR, Tsacas L, Ashburner M (1986) The melanogaster species group. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila. Academic Press, New York, pp 147–256

    Google Scholar 

  • Levins R (1969) Thermal acclimation and heat resistance in Drosophila species. Am Nat 103:483–499

    Article  Google Scholar 

  • Lindsey CF, Fanara JJ, Morgan TJ (2012) Genetic variation in heat-stress tolerance among South American Drosophila populations. Genetica 139:1331–1337

    Google Scholar 

  • Loeschcke V, Krebs RA, Barker JSF (1994) Genetic variation for resistance and acclimation to high temperature stress in Drosophila buzzatii. Biol J Linn Soc 52:83–92

    Article  Google Scholar 

  • Markow TA, O’Grady P (2006) A guide to species identification and use. Elsevier, London

    Google Scholar 

  • Mitchell KA, Sgro CM, Hoffmann AA (2011) Phenotypic plasticity in upper thermal limits is weakly related to Drosophila species distributions. Funct Ecol 25:661–670

    Article  Google Scholar 

  • Overgaard J, Kristensen TN, Mitchell KA, Hoffmann AA (2011) Thermal tolerance in widespread and tropical Drosophila Species: does phenotypic plasticity increase with latitude? Am Nat 178:S80–S96

    Article  PubMed  Google Scholar 

  • Ragland GJ, Kingsolver JG (2008) Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii. Evolution 62:1345–1357

    Article  PubMed  Google Scholar 

  • Rako L, Hoffmann AA (2006) Complexity of the cold acclimation response in Drosophila melanogaster. J Insect Physiol 52:94–104

    Article  CAS  PubMed  Google Scholar 

  • Ramniwas S, Kajla B (2012) Divergent strategy for adaptation to drought stress in two sibling species of montium species subgroup: Drosophila kikkawai and Drosophila leontia. J Insect Physiol 58:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Sarup P, Loeschcke V (2010) Developmental acclimation affects clinal variation in stress resistance traits in Drosophila buzzatii. J Evol Biol 23:957–965

    Article  CAS  PubMed  Google Scholar 

  • Schilthuizen M, Kellermann V (2014) Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes. Evol Appl 7:56–67

    Article  PubMed  Google Scholar 

  • Sgro CM, Overgaard J, Kristensen KA, Cockerell FE, Hoffmann AA (2010) A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. J Evol Biol 23:2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Stratman R, Markow TA (1998) Resistance to thermal stress in Desert Drosophila. Funct Ecol 8:965–970

    Article  Google Scholar 

  • Tsacas L, David J (1977) Systematics and biogeography of the Drosophila kikkawai complex with descriptions of new species (Diptera, Drosophilidae). Ann Soc Entomol Fr (NS) 13:675–693

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Ranga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranga, P., Prakash, R. & Mrinal, N. Sibling Drosophila species (Drosophila leontia and Drosophila kikkawai) show divergence for thermotolerance along a latitudinal gradient. Evol Ecol 31, 93–117 (2017). https://doi.org/10.1007/s10682-016-9880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9880-1

Keywords

Navigation