Skip to main content
Log in

An empirical test for convergence using African barbs (Cypriniformes: Cyprinidae)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Evidence for convergence is often based on overall similarity as interpreted by human eyes. We use geometric morphometrics and an analysis of phylogenetic signal to determine if similarity in form between two sympatric species of cyprinid fishes in a community from the Dja River of Cameroon is due convergence or shared evolutionary history. The two species, Enteromius aspilus and E. guirali, are deep-bodied and are very similar in color and appear to school together. The species co-occur with seven other species of Enteromius that have the more fusiform shape seen in other small barbs across Africa. Phylogenetic analysis of the mitochondrial cytochrome b and COI genes suggests that they are not sister taxa, and there is no phylogenetic signal when the phylogeny is overlaid on shape space. The convergence between the two is likely due to a variety of factors including predator avoidance and crypsis in open water, social mimicry to increase the benefit of the selfish herd effect, and increased protection of E. aspilus via Batesian mimicry of E. guirali, which has a protective dorsal spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell RA, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Sabaj Pérez MH, Petry P (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58:403–414

    Article  Google Scholar 

  • Adams DC (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63:685–697

    Article  PubMed  Google Scholar 

  • Adams DC, Otarola-Castillo E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399

    Article  Google Scholar 

  • Arbour JH, López-Fernández H (2013) Ecological variation in South American geophagine cichlids arose during an early burst of adaptive morphological and functional evolution. Proc R Soc B 27:2431–2442

    Google Scholar 

  • Armbruster JW (2012) Standardized measurements, landmarks, and meristic counts for cypriniform fishes. Zootaxa 3586:8–16

    Google Scholar 

  • Beauchamp G, Goodale E (2011) Plumage mimicry in avian mixed-species flocks: more or less than meet the eye? Auk 128:487–496

    Article  Google Scholar 

  • Bleckmann H (1993) Role of the lateral line and fish behavior. In: Pitcher TJ (ed) Behaviour of teleost fishes, 2nd edn. Chapman and Hall, London, pp 201–246

    Chapter  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in zoology, vol 41, 1st edn. Gustav Fischer, Stuttgart, pp 1–115

    Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Briolay J, Galtier N, Brito RM, Bouvet Y (1998) Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. Mol Phylogenet Evol 9:100–108

    Article  CAS  PubMed  Google Scholar 

  • Brönmark C, Miner JG (1992) Predator-induced phenotypical change in body morphology in crucian carp. Science 258:1348–1350

    Article  PubMed  Google Scholar 

  • Bunkley-Williams L, Williams EH Jr (2000) Juvenile Black Snapper, Aspilus dentatus (Lutjanidae), mimic Blue Chromis, Chromis cyanea (Pomacentridae). Copeia 2000:579–581

    Article  Google Scholar 

  • Chardon M, Vandewalle P (1991) Acoustico-lateralis system. In: Winfield IJ, Nelson JS (eds) Cyprinid fishes: systematics, biology and exploitation, 2nd edn. Chapman and Hall, New York, pp 332–352

    Chapter  Google Scholar 

  • Chirat R, Moulton DE, Goriely A (2013) Mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc Natl Acad Sci 110:6015–6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway Morris S (2009) Evolution and convergence: some wider considerations. In: Conway Morris S (ed) The deep structure of biology: is convergence sufficiently ubiquitous to give a directional signal?. Templeton Foundation Press, West Conshohocken, pp 46–67

    Google Scholar 

  • Dafni J, Diamant A (1984) School-oriented mimicry, a new type of mimicry in fishes. Olendorf 20:45–50

    Google Scholar 

  • Daget J (1978) Contribution à la faune de la Republique Unie du Cameroun. Poissons du Dja, du Boumba, et du Ngoko. Cybium 3:35–52

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • De Weirdt DA, Getahun A, Tshibwabwa S, Teugels GG (2007) Cyprinidae. In: Stiassny MLG, Teugels GG, Hopkins CD (eds) The fresh and brackish water fishes of lower Guinea, West-Central Africa. Volume I. Collection Faune et Flore tropicales 42. Institut de Recherche pour le Développement, Paris, Muséum National d’Histoire Naturelle, Paris, and Musée Royal de l’Afrique Centrale, Tervuren, pp 466–572

  • Denton EJ (1971) Reflectors in fishes. Sci Am 224:64–72

    Article  Google Scholar 

  • Eigenmann CH (1909) Cave vertebrates of America. A study in degenerative evolution. Carnegie Institution of Washington, Washington

    Book  Google Scholar 

  • Endler JA (1983) Natural and sexual selection on colour patterns in poeciliid fishes. Environ Biol Fishes 9:173–190

    Article  Google Scholar 

  • Eschmeyer WN, Fong JD (2015) Species of fishes by family/subfamily. On-line version dated 1 Oct 2015. http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford Univ. Press, London

    Book  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. A Eug 7:179–188

    Article  Google Scholar 

  • Foster WA, Treherne JE (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293:466–467

    Article  Google Scholar 

  • Garland T Jr (1992) Rate tests for phenotypic evolution using phylogenetically independent contrasts. Am Nat 140:509–519

    Article  PubMed  Google Scholar 

  • Gatz AJ Jr (1979) Ecological morphology of freshwater stream fishes. Tulane Stud Zool Bot 21:91–124

    Google Scholar 

  • Gosline WA (1973) Considerations regarding the phylogeny of cypriniform fishes, with special reference to structures associated with feeding. Copeia 1973:761–776

    Article  Google Scholar 

  • Grubich J (2003) Morphological convergence of pharyngeal jaw structure in durophagous perciform fish. Biol J Linn Soc 80:147–165

    Article  Google Scholar 

  • Hambright KD (1991) Experimental analysis of prey selection by largemouth bass: role of predator mouth width and prey body depth. Trans Am Fish Soc 120:500–508

    Article  Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311

    Article  CAS  PubMed  Google Scholar 

  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    Article  CAS  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Klingenberg CP, Gidaszewski NA (2010) Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst Biol 59:245–261

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg CP, Monteiro LR (2005) Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst Biol 54:678–688

    Article  PubMed  Google Scholar 

  • Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol Phylogenet Evol 2:158–165

    Article  CAS  PubMed  Google Scholar 

  • Kottelat M (2013) The fishes of the inland waters of southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves, and estuaries. Raffles B Zool Suppl 27:1–663

    Google Scholar 

  • Kottelat M, Whitten AJ, Kartikasari SN, Wirjoatmodjo S (1993) Freshwater fishes of western Indonesia and Sulawesi. Periplus Editions, Hong Kong

    Google Scholar 

  • Krajewski JP, Bonaldo RM, Sazima C, Sazima I (2004) The association of the goatfish Mulloidichthys martinicus with the grunt Haemulon chrysargyreum: an example of protective mimicry. Biota Neotrop 4:1–4

    Article  Google Scholar 

  • Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Lima SL (1995) Back to the basics of antipredatory vigilance: the group size effect. Anim Behav 49:1–20

    Article  Google Scholar 

  • Losos JB (2011) Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am Nat 177:709–727

    Article  PubMed  Google Scholar 

  • Maddison WP (1991) Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Syst Zool 40:304–314

    Article  Google Scholar 

  • Mayden RL, Chen W-J, Bart HL, Doosey MH, Simons AM, Tang KL, Wood RM, Agnew MK, Yang L, Hirt MV, Clements MD, Saitoh K, Sado T, Miya M, Nishida M (2009) Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fishes—order Cypriniformes (Actinopterygii: Ostariophysi): a case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogenet Evol 51:500–514

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov 2010, New Orleans, LA, pp 1–8

  • Mina MV, Mironovsky AN, Golani D (2001) Conequences and modes of morphological diversification of East African and Eurasian barbins (genera Barbus, Varicorhinus and Capoeta) with particular reference to Barbus intermedius complex. Environ Biol Fishes 61:241–252

    Article  Google Scholar 

  • Moynihan M (1968) Social mimicry; character convergence versus character displacement. Evolution 1968:315–331

    Article  Google Scholar 

  • Nilsson PA, Brönmark C (2000) Prey vulnerability to a gape-size limited predator, behavioural and morphological impacts on northern pike piscivory. Oikos 88:539–546

    Article  Google Scholar 

  • Nur U (1970) Evolutionary rates of models and mimics in Batesian mimicry. Am Nat 104:477–486

    Article  Google Scholar 

  • Owen JG, Chmielewski MA (1985) On canonical variates ellipses and the construction of confidence ellipses in systematic studies. Syst Zool 34:366–374

    Article  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water, II, Integrating cavity measurements. Appl Opt 3633:8710–8723

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN:3-900051-07-0. http://www.R-project.org/

  • Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268

    Google Scholar 

  • Randall JE (2005) A review of mimicry in marine fishes. Zool Stud 44:299–328

    Google Scholar 

  • Randall JE, Gueze P (1980) The goatfish Mulloidichthys mimicus n. sp. (Pisces, Mullidae) from Oceania, a mimic of the snapper Lutjanus kasmira (Pisces, Lutjanidae). Bull Mus Natl Hist Nat Sect A Zool Biol Ecol Anim 2:603–609

    Google Scholar 

  • Randall JE, McCosker JE (1993) Social mimicry in fishes. Rev Fr Aquariol Herpetol 20:5–8

    Google Scholar 

  • Roberts G (1996) Why individual vigilance declines as group size increases. Anim Behav 51:1077–1086

    Article  Google Scholar 

  • Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–2160

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (2002) Geometric morphometrics and phylogeny. In: MacLeod N, Forey PL (eds) Morphology, shape, and phylogeny. Taylor & Francis, London, pp 175–193

    Chapter  Google Scholar 

  • Rohlf FJ (2010a) TpsDig 2 (Department of Ecology and Evolution, State University of New York at Stony Brook, NY), v2.16

  • Rohlf FJ (2010b) tpsUtil: file utility program. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook

    Google Scholar 

  • Ronquist F, Teslenk M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) mrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rüber L, Adams DC (2001) Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika. J Evol Biol 14:325–332

    Article  Google Scholar 

  • Ruxton GD, Speed MP, Kelly DJ (2004) What, if anything, is the adaptive function of countershading? An Behav 68:445–451

    Article  Google Scholar 

  • Schliewen U (2007) Aquatic Biodiversity of the Ngoyla Forest Jengi South East Forests Project Area, Cameroon with a pictorial checklist of the fishes of the Jengi Forest. Report to WWF-CPO, Jengi South East Forests Project

  • Sidlauskas BL (2008) Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:3135–3156

    Article  PubMed  Google Scholar 

  • Slobodian V, Bockmann FA (2013) A new Brachyrhamdia (Siluriformes: Heptapteridae) from Rio Japurá basin, Brazil, with comments on its phylogenetic affinities, biogeography and mimicry in the genus. Zootaxa 3717:1–22

    Article  PubMed  Google Scholar 

  • Smith-Vaniz WF, Satapoomin U, Allen GR (2001) Meiacanthus urostigma, a new fangblenny from the northeastern Indian Ocean, with discussion and examples of mimicry in species of Meiacanthus (Teleostei: Blenniidae: Nemophini). Aqua J Ichthyol Aquatic Biol 5:25–43

    Google Scholar 

  • Springer VG, Smith-Vaniz WF (1972) Mimetic relationships involving fishes of the family Blenniidae. Smithson Contrib Zool 112:1–36

    Google Scholar 

  • Stiassny MLJ, Teugels GG, Hopkins CD (2007) Poissons d’eaux et saumâtres de basse Guinée ouest de l’Afrique centrale, vol 1. IRD Éditions, Paris

    Google Scholar 

  • Tao W, Zou M, Wang X, Gan X, Mayden RL, He S (2010) Phylogenomic analysis resolves the formerly intractable adaptive diversification of the endemic clade of east Asian Cyprinidae (Cypriniformes). PLoS ONE 5:e13508

    Article  PubMed  PubMed Central  Google Scholar 

  • Thayer AH (1896) The law which underlies protective coloration. Auk 13:124–129

    Article  Google Scholar 

  • Thayer GH (1909) Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern. Macmillan, London

    Google Scholar 

  • Vane-Wright RI (1980) On the definition of mimicry. Biol J Linn Soc 13:1–6

    Article  Google Scholar 

  • Wake DB, Wake MH, Specht CD (2011) Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331:1032–1035

    Article  CAS  PubMed  Google Scholar 

  • Webster M, Atton N, Hart P, Ward A (2011) Habitat-specific morphological variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a drainage Basin. PLoS ONE 6:e21060. doi:10.1371/journal.pone.0021060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikramanayake ED (1990) Ecomorphology and biogeography of a tropical stream fish assemblage: evolution of assemblage structure. Ecology 71:1756–1764

    Article  Google Scholar 

  • Winemiller KO (1991) Ecomorphological diversification of freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–365

    Article  Google Scholar 

  • Woods LP, Inger RF (1957) The cave, spring, and swamp fishes of the family Amblyopsidae of central and eastern United States. Am Midl Nat 58:232–256

    Article  Google Scholar 

  • Yang L, Sado T, Hirt MV, Pasco-Viel E, Arunachalam M, Li J, Wang X, Freyhof J, Saitoh K, Simons A, Miya M, He S, Mayden RL (2015) Phylogeny and polyploidy: resolving the classification of cyprinine Fishes (Teleostei: Cypriniformes). Mol Phylogen Evol 85:97–116

    Article  Google Scholar 

  • Yates F (1934) Contingency tables involving small numbers and the Chi square test. Suppl J R Stat Soc 1:217–235

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicole Smolensky for arranging and aiding with fieldwork in Cameroon and John Friel, Kirk Winemeiller, and Lee Fitzgerald for help in the field. Thanks to the Armbruster lab for discussions on this paper, and Milton Tan with aid in phylogenetic analyses. This paper was supported by the United States National Science Foundation “All Cypriniformes Species Inventory”: Grant (DEB-1023403). This paper is contribution No. 720 of the Auburn University Museum of Natural History.

Author contributions

J.W.A, C.C.S., and M.M.H. conceived of and wrote the paper. C.C.S. and M.M.H. performed the molecular analyses, and J.W.A. performed the geometric morphometric analyses. J.W.A. and C.C.S. did the fieldwork in Cameroon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan W. Armbruster.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 113 kb)

Supplementary material 2 (DOCX 96 kb)

Fig. S1

Direction of shape changes in the multivariate analyses of geometric morphometrics. The PC axes were identical for analyses with all species (‘All Species’ on plots) and just those for which genetic data were available (‘Genetics’). Wireframes represent the consensus configuration (gray) and the extreme positive configuration (black) in order to show which landmarks show the most variation along the axes (TIFF 47851 kb)

Fig. S2

Phylogenetic relationships of Enteromius based on a Bayesian Analysis of concatenated cytochrome b and COI data. Numbers on nodes indicate posterior probabilities and asterisks are posterior probabilities >95 %. Taxa in red are species from the Dja that were retained for the test of phylogenetic signal (relationships in Fig. 4). Scale bar represents the number of nucleotide substitutions per site (TIFF 19187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armbruster, J.W., Stout, C.C. & Hayes, M.M. An empirical test for convergence using African barbs (Cypriniformes: Cyprinidae). Evol Ecol 30, 435–450 (2016). https://doi.org/10.1007/s10682-015-9811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9811-6

Keywords

Navigation