Skip to main content
Log in

Meta-analytic insights into evolutionary ecology: an introduction and synthesis

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Meta-analysis now pervades ecology and evolutionary biology as the tool of choice for the synthesis of primary results. In the opening article of this special issue on “Meta-analytic insights into evolutionary ecology”, we begin by contrasting meta-analysis with the more traditional ‘narrative’ reviewing approach. Although it is not without faults, we find that meta-analysis usually outperforms qualitative reviews with respect to testing hypotheses, identifying sources of heterogeneity among primary results, assessing publication bias, and even generating new hypotheses and future research directions. We then highlight the key messages of the nine other contributions to this special issue, on the topics of natural selection, sexual selection, community ecology, host-parasite interactions, plant evolutionary ecology, social behaviour, behavioural syndromes, conservation biology, and methodological advances. We also discuss issues associated with the quality assessments and the inadequate reporting of basic statistics in primary empirical studies, and the need to share credit with the authors of those primary studies through actual citations. Finally, we turn to the future and argue that meta-analysis needs to adopt the principles of systematic reviews, following strict protocols that facilitate replicable and updatable research syntheses. Ecology and evolutionary biology urgently need collaborative networks such as the Cochrane Collaboration in the medical sciences, to oversee the standards of systematic reviews and meta-analyses. The formation of a collaborative meta-analytic research network will be an important step for meta-analysis to solidify its central role in research and data synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnqvist G, Kirkpatrick M (2005) The evolution of infidelity in socially monogamous passerines: the strength of direct and indirect selection on extrapair copulation behavior in females. Am Nat 165:S26–S37

    Google Scholar 

  • Arnqvist G, Wooster D (1995) Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol Evol 10:236–240

    Article  PubMed  CAS  Google Scholar 

  • Arnqvist G, Rowe L, Krupa JJ, Sih A (1996) Assortative mating by size: a meta-analysis of mating patterns in water striders. Evol Ecol 10:265–284

    Article  Google Scholar 

  • Booth A, Clarke M, Dooley G, Ghersi D, Moher D, Petticrew M, Stewart L (2012) The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev 1:2

    Article  PubMed  Google Scholar 

  • Bushman BJ, Wang MC (2009) Vote-counting procedure in meta-analysis. In: Cooper H, Hedges LV, Valentine JC (eds) The handbook of research synthesis and meta-analysis. Russell Sage Foundation, New York

    Google Scholar 

  • Cadotte MW, Mehrkens LR, Menge DNL (2012) Gauging the impact of meta-analysis on ecology. Evol Ecol. doi:10.1007/s10682-012-9585-z

    Google Scholar 

  • Caldwell DM, Welton NJ, Ades AE (2010) Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency. J Clin Epidemiol 63:875–882

    Article  PubMed  Google Scholar 

  • Castellanos MC, Verdú M (2012) Meta-analysis of meta-analyses in plant evolutionary ecology. Evol Ecol. doi:10.1007/s10682-012-9562-6

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Cooper H, Hedges LV, Valentine JC (2009) The handbook of research synthesis and meta-analysis, 2nd edn. Russell Sage Foundation, New York

    Google Scholar 

  • Cornwallis CK, West SA, Griffin AS (2009) Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. J Evol Biol 22:2445–2457

    Article  PubMed  CAS  Google Scholar 

  • Côté IM, Reynolds JD (2012) Meta-analysis at the intersection of evolutionary ecology and conservation. Evol Ecol. doi:10.1007/s10682-012-9568-0

    Google Scholar 

  • Egger M, Smith GD, Altman DG (2001) Systematic reviews in health care: meta-analysis in context. 2nd edn. BMJ, London

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Fletcher D, Dixon PM (2012) Modelling data from different sites, times or studies: weighted versus unweighted regression. Methods Ecol Evol 3:168–176

    Article  Google Scholar 

  • Forstmeier W, Martin K, Bolund E, Schielzeth H, Kempenaers B (2011) Female extrapair mating behavior can evolve via indirect selection on males. Proc Nat Acad Sci USA 108:10608–10613

    Article  PubMed  CAS  Google Scholar 

  • Garamszegi L, Nunn CL (2012) Informatics approaches to develop dynamic meta-analyses. Evol Ecol. doi:10.1007/s10682-012-9592-0

  • Garamszegi L, Markó G, Herczeg G (2012) A meta-analysis of correlated behaviours with implications for behavioural syndromes: mean effect size, publication bias, phylogenetic effects and the role of mediator variables. Evol Ecol. doi:10.1007/s10682-012-9589-8

    Google Scholar 

  • Glass GV (1976) Primary, secondary, and meta-analysis of research. Educ Res 5:3–8

    Google Scholar 

  • Griffin AS, West SA (2003) Kin discrimination and the benefit of helping in cooperatively breeding vertebrates. Science 302:634–636

    Article  PubMed  CAS  Google Scholar 

  • Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149

    Article  Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    Article  PubMed  CAS  Google Scholar 

  • Halliday T, Arnold SJ (1987) Multiple mating by females—a perspective from quantitative genetics. Anim Behav 35:939–941

    Article  Google Scholar 

  • Hedges L, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, New York

    Google Scholar 

  • Higgins JP, Green S (2008) Cochrane handbook for systematic reviews of interventions. Wiley, Chichester

    Book  Google Scholar 

  • Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  • Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Brit Med J 327:557–560

    Article  PubMed  Google Scholar 

  • Ioannidis JPA (2009) Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. Can Med Assoc J 181:488–493

    Article  Google Scholar 

  • Ioannidis JP (2010) Meta-research: the art of getting it wrong. Res Synth Methods 3:169–184

    Article  Google Scholar 

  • Jackson D, Riley R, White IR (2011) Multivariate meta-analysis: potential and promise. Stat Med 30:2481–2498

    Article  Google Scholar 

  • Jarvinen A (1991) A meta-analytic study of the effects of female age on laying date and clutch size in the great tit Parus major and the pied flycatcher Ficedula hypoleuca. Ibis 133:62–66

    Article  Google Scholar 

  • Jennions M, Kahn AT, Kelly CD, Kokko H (2012) Meta-analysis and sexual selection: past studies and future possibilities. Evol Ecol. doi:10.1007/s10682-012-9567-1

    Google Scholar 

  • Jennions MD, Lorite C, Rosenberg M, Rothstein H (2013) Publication and related biases. In: Koricheva J, Gurevitch J, Mengersen K (eds) The handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton

  • Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM (2012) Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol Ecol. doi:10.1007/s10682-012-9563-5

    Google Scholar 

  • Koricheva J, Gurevitch J, Mengersen K (2013) The handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton

  • Kueffer C, Niinemets U, Drenovsky RE, Kattge J, Milberg P, Poorter H, Reich PB, Werner C, Westoby M, Wright IJ (2011) Fame, glory and neglect in meta-analyses. Trends Ecol Evol 26:493–494

    Article  PubMed  Google Scholar 

  • Lajeunesse MJ (2010) Achieving synthesis with meta-analysis by combining and comparing all available studies. Ecology 91:2561–2564

    Article  PubMed  Google Scholar 

  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Plos Med 6(7):e1000100, BMJ 339:b2700

  • Littell JH, Corcoran J, Pillai V (2008) Systematic reviews and meta-analysis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Majolo B, Aureli F, Schino G (2012) Meta-analysis and animal social behaviour. Evol Ecol. doi:10.1007/s10682-012-9559-1

    Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med 6:e1000097

    Google Scholar 

  • Møller AP, Jennions MD (2001) Testing and adjusting for publication bias. Trends Ecol Evol 16:580–586

    Article  Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    Article  PubMed  Google Scholar 

  • Nakagawa S, Santos ESA (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol. doi:10.1007/s10682-012-9555-5

    Google Scholar 

  • Ord TJ, Stamps JA (2009) Species identity cues in animal communication. Am Nat 174:585–593

    Article  PubMed  Google Scholar 

  • Petticrew M, Roberts H (2006) Systematic reviews in the social sciences. Blackwell, Oxford

    Book  Google Scholar 

  • Poulin R, Forbes MR (2012) Meta-analysis and research on host–parasite interactions: past and future. Evol Ecol. doi:10.1007/s10682-011-9544-0

    Google Scholar 

  • Reale D, Dingemanse NJ, Kazem AJN, Wright J (2010) Evolutionary and ecological approaches to the study of personality. Philos T R Soc B 365:3937–3946

    Article  Google Scholar 

  • Reichman OJ, Jones MB, Schildhauer MP (2011) Challenges and opportunities of open data in ecology. Science 331:703–705

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal R (1979) The “file drawer problem” and tolerance for null results. Psychol Bull 86:638–641

    Article  Google Scholar 

  • Rothstein HR, Sutton AJ, Borenstein M (2005) Publication bias in meta-analysis. Wiley, Chichester

    Book  Google Scholar 

  • Schino G (2001) Grooming, competition and social rank among female primates: a meta-analysis. Anim Behav 62:265–271

    Article  Google Scholar 

  • Schino G, Aureli F (2008) Grooming reciprocation among female primates: a meta-analysis. Biol Lett 4:9–11

    Article  PubMed  Google Scholar 

  • Schino G, Aureli F (2010) The relative roles of kinship and reciprocity in explaining primate altruism. Ecol Lett 13:45–50

    Article  PubMed  Google Scholar 

  • Stewart G (2010) Meta-analysis in applied ecology. Biol Lett 6:78–81

    Article  PubMed  Google Scholar 

  • Sutton AJ, Higgins JPI (2008) Recent developments in meta-analysis. Stat Med 27:625–650

    Article  PubMed  Google Scholar 

  • Thompson SG, Higgins JPT (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21:1559–1573

    Article  PubMed  Google Scholar 

  • Valentine JC (2009) Judging the quality of primary research. In: Hedges LV, Valentine JC, Cooper H (eds) The handbook of research synthesis and meta-analysis. Russell Sage Foundation, New York, pp 129–146

    Google Scholar 

  • Whittaker RJ (2010) Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness-productivity relationship. Ecology 91:2522–2533

    Article  PubMed  Google Scholar 

  • Wilkinson L (1999) Statistical methods in psychology journals—guidelines and explanations. Am Psychol 54:594–604

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank John Endler for conceiving this special issue and Losia Lagisz for figure preparation, and Alistair Senior, Amanda Valois and two anonymous referees for comments on earlier versions of this manuscript. SN is supported by NRCGD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, S., Poulin, R. Meta-analytic insights into evolutionary ecology: an introduction and synthesis. Evol Ecol 26, 1085–1099 (2012). https://doi.org/10.1007/s10682-012-9593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9593-z

Keywords

Navigation