Skip to main content
Log in

Gauging the impact of meta-analysis on ecology

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Meta-analyses are an increasingly used set of statistical tools that allow for data from multiple studies to be drawn together allowing broader, more generalizable conclusions. The extent to which the increase in the number of meta-analyses in ecology, relative to other types of papers, has influenced how questions are asked and the current state of knowledge has not been assessed before. Here, we gauge the impact of meta-analyses in ecology quantitatively and qualitatively. For the quantitative assessment, we conducted an analysis of 240 published meta-analyses to examine trends in ecological meta-analyses. Our examination shows that publication rates of meta-analyses in ecology have increased through time, and that more recent meta-analyses have been more comprehensive, including more studies and a greater temporal range of studies. Meta-analyses in ecology are the result of larger collaborations with meta-analyses being authored by larger teams than other studies, and those funded by collaborative centers have even larger collaborations. These larger collaborations result in a larger scope and scale of the analyses—by using more papers, datasets, species and years of data. Qualitatively, we discuss three examples: the strength of competition, the nature of how biodiversity affects ecosystem function, and the response of species to global climate change, where meta-analyses supplied the critical evaluation of accepted ecological explanations. As scientific criticism and controversy mount, the true power of meta-analyses is to serve as the capstone evidence supporting the validity of an explanation and to possibly herald the shift to other potential explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarssen LW (1997) High productivity in grassland ecosystems: effected by species diversity or productive species? Oikos 80:183–184

    Article  Google Scholar 

  • Arnqvist G, Wooster D (1995) Metaanalysis—synthesizing research findings in ecology and evolution. Trends Ecol Evol 10:236–240

    Article  PubMed  CAS  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Bell G (2001) Neutral macroecology. Science 293:2143–2148

    Article  Google Scholar 

  • Broecker WS (1975) Climatic change: are we on the brink of a pronounced global warming? Science 189:460–463

    Article  PubMed  CAS  Google Scholar 

  • Brown WL Jr, Wilson EO (1956) Character displacement. Syst Zool 5:49–64

    Article  Google Scholar 

  • Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4:e5695

    Article  PubMed  Google Scholar 

  • Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89

    Article  PubMed  CAS  Google Scholar 

  • Cardinale BJ, Palmer MA (2002) Disturbance moderates biodiversity-ecosystem function relationships: experimental evidence from caddisflies in stream mesocosms. Ecology 83:1915–1927

    Google Scholar 

  • Cardinale BJ, Ives AR, Ichausti P (2004) Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104:437–450

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  PubMed  CAS  Google Scholar 

  • Carpenter SR, Armbrust EV, Arzberger PW, Chapin FS, Elser JJ, Hackett EJ, Ives AR, Kareiva PM, Leibold MA, Lundberg P, Mangel M, Merchant N, Murdoch WW, Palmer MA, Peters DPC, Pickett STA, Smith KK, Wall DH, Zimmerman AS (2009) Accelerate synthesis in ecology and environmental sciences. Bioscience 59:699–701

    Article  Google Scholar 

  • Carroll I, Cardinale B, Nisbet R (2011) Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology 92:1157–1165

    Article  PubMed  Google Scholar 

  • Connell JH (1961) Influence of interspecific competition and other factors on distribution of barnacle chthamalus stellatus. Ecology 42:710

    Article  Google Scholar 

  • Connell JH (1983) On the prevalence and relative importance of interspecific competition—evidence from field experiments. Am Nat 122:661–696

    Article  Google Scholar 

  • Connor EF, Simberloff D (1979) The assembly of species communities: chance or competition? Ecology 60:1132–1140

    Article  Google Scholar 

  • Connor EF, Simberloff D (1983) Interspecific competition and species co-occurrence patterns on islands: null models and the evaluation of evidence. Oikos 41:455–465

    Article  Google Scholar 

  • Connor EF, Simberloff D (1984) Neutral models of species co-occurrence patterns. In: Strong DR, Simberloff D, Abele LG, Thistle A (eds) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, pp 341–343

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  PubMed  CAS  Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge

    Google Scholar 

  • Drake BG, GonzalezMeler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    Article  PubMed  CAS  Google Scholar 

  • Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem function relationships. Ecology 1573–1581

  • Fox JW, Harpole WS (2008) Revealing how species loss affects ecosystem function: the trait-based price equation partition. Ecology 89:269–279

    Article  PubMed  Google Scholar 

  • Franklin JF, Bledsoe CS, Callahan JT (1990) Contributions of the long-term ecological research-program - an expanded network of scientists, sites, and programs can provide crucial comparative analyses. Bioscience 40:509–523

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Hafner Publishing Company, New York

    Book  Google Scholar 

  • Gilpin ME, Diamond JM (1984) Are species co-occurrences on islands non-random, and are null hypotheses useful in community ecology? In: Strong DR, Simberloff D, Abele LG, Thistle A (eds) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton

    Google Scholar 

  • Gross CL (2005) A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes—more monoecy but why? Am J Bot 92:907–919

    Article  PubMed  CAS  Google Scholar 

  • Gurevitch J, Hedges LV (2001) Meta-analysis: combining the results of independent experiments. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, Oxford, pp 347–369

    Google Scholar 

  • Gurevitch J, Morrow LL, Wallace A, Walsh JS (1992) A metaanalysis of competition in field experiments. Am Nat 140:539–572

    Article  Google Scholar 

  • Gurevitch J, Morrison JA, Hedges LV (2000) The interaction between competition and predation: a meta-analysis of field experiments. Am Nat 155:435–453

    Article  PubMed  Google Scholar 

  • Gurevitch J, Curtis PS, Jones MH (2001) Meta-analysis in ecology. Adv Ecol Res 32(32):199–247

    Article  CAS  Google Scholar 

  • Hackett E, Parker J (2010) Leadership in scientific research groups. In: 4S Annual meeting, University of Tokyo, Tokyo

  • Hampton SE, Parker JN (2011) Success in synthesis. Bioscience 61:900–910

    Article  Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190

    Article  PubMed  CAS  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and structure of prey communities. Theor Popul Biol 12:197–229

    Article  PubMed  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Houghton JT, Ding Y, Gribbs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography, vol 32. Princeton University Press, Princeton

    Google Scholar 

  • Huston M (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  Google Scholar 

  • Huston M, Aarssen LW, Austin MP, Cade BS, Fridley JD, Garnier E, Grime JP, Hodgson JG, Lauenroth WK, Thompson K, Vandermeer J, Wardle DA (2000) No consistent effect of plant diversity on productivity. Science 289:1255

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson GE (1967) A treatise on limnology, vol 2. Wiley, New York

    Google Scholar 

  • Jones MB, Schildhauer MP, Reichman OJ, Bowers S (2006) The new bioinformatics: integrating ecological data from the gene to the biosphere. Annu Rev Ecol Evol Syst 37:519–544

    Article  Google Scholar 

  • Karst J, Marczak L, Jones MD, Turkington R (2008) The mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 89:1032–1042

    Article  PubMed  Google Scholar 

  • Lakatos I (1976) Proofs and Refutations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JD, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Lindenmayer DB, Likens GE (2011) Losing the culture of ecology. Bull Ecol Soc Am 92:245–246

    Article  Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17

    Article  Google Scholar 

  • Loreau M (2010) From populations to ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton

    Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  PubMed  CAS  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore MD

    Google Scholar 

  • Massol F, Gravel D, Mouquet N, Cadotte MW, Fukami T, Leibold MA (2011) Linking community and ecosystem dynamics through spatial ecology. Ecol Lett 14:313–323

    Article  PubMed  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • McGill BJ (2006) A renaissance in the study of abundance. Science 314:770–772

    Article  PubMed  CAS  Google Scholar 

  • Menge BA, Chan F, Dudas S, Eerkes-Medrano D, Grorud-Colvert K, Heiman K, Hessing-Lewis M, Iles A, Milston-Clements R, Noble M, Page-Albins K, Richmond E, Rilov G, Rose J, Tyburczy J, Vinueza L, Zarnetske P (2009) Do terrestrial ecologists ignore aquatic literature? Front Ecol Environ 7:82–83

    Article  Google Scholar 

  • Micheli F, Halpern BS (2005) Low functional redundancy in coastal marine assemblages. Ecol Lett 8:391–400

    Article  Google Scholar 

  • Michener WK (2006) Meta-information concepts for ecological data management. Ecol Inform 1:3–7

    Article  Google Scholar 

  • Murtaugh PA (2002) Journal quality, effect size, and publication bias in meta-analyses. Ecology 83:1162–1166

    Article  Google Scholar 

  • Naeem S, Li SB (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509

    Article  CAS  Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737

    Article  Google Scholar 

  • Olkin I (1996) Meta-analysis: current issues in research synthesis. Stat Med 15:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Osenberg CW, Sarnelle O, Cooper SD, Holt RD (1999) Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80:1105–1117

    Article  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. In: Annual review of ecology evolution and systematics, vol 37. Annual reviews, Palo Alto, pp 637–669

  • Peter H, Ylla I, Gudasz C, Romani AM, Sabater S, Tranvik LJ (2011) Multifunctionality and diversity in bacterial biofilms. PLoS One 6:8

    Article  Google Scholar 

  • Peters RH (1991) A critique for ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Popper K (1963) Conjectures and refutations: the growth of scientific knowledge. Routledge, New York

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R foundation for statistical computing. ISBN 3-900051-07-0, URL: http://www.R-project.org. In, Vienna, Austria

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  PubMed  CAS  Google Scholar 

  • Ross HH (1957) Principles of natural coexistence indicated by leafhopper populations. Evolution 11:113–129

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Schoener TW (1982) The controversy over interspecific competition. Am Sci 70:586–595

    Google Scholar 

  • Schoener TW (1983) Field experiments on interspecific competition. Am Nat 122:240–285

    Article  Google Scholar 

  • Simberloff D (2006) Rejoinder to: don’t calculate effect sizes; study ecological effects. Ecol Lett 9:921–922

    Article  Google Scholar 

  • Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze ED, Siamantziouras ASD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr 75:37–63

    Article  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Nat Acad Sci USA 102:4387–4392

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  PubMed  CAS  Google Scholar 

  • Tucker CM, Cadotte MW (2011) The empirical divide (http://evol-eco.blogspot.ca/2011/07/empirical-divide.html). In: The EEB and Flow vol 2011

  • Udvardy MFD (1959) Notes on the ecological concepts of habitat, biotope and niche. Ecology 40:725–728

    Article  Google Scholar 

  • United Nations Environment Programme (1995) Global biodiversity assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Volterra V (1931) Variations and fluctuations of the number of individuals in animal species living together. In: Chapman RN (ed) Animal ecology. McGraw-Hill, New York

    Google Scholar 

  • Wardle DA (1999) Is ‘‘sampling effect’’ a problem for experiments investigating biodiversity–ecosystem function relationships? Oikos 87:403–407

    Article  Google Scholar 

  • Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Nat Acad Sci USA 107:1443–1446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the editors of this special issue for their invitation and to two anonymous reviewers for helping to greatly improve this paper. Funding for this work was generously provided by the National Center for Ecological Analysis and Synthesis, a Center funded by NSF (Grant #DEB-0553768), the University of California, Santa Barbara, and the State of California and an NSERC grant (386151) to MWC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc W. Cadotte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (TXT 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadotte, M.W., Mehrkens, L.R. & Menge, D.N.L. Gauging the impact of meta-analysis on ecology. Evol Ecol 26, 1153–1167 (2012). https://doi.org/10.1007/s10682-012-9585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9585-z

Keywords

Navigation