Skip to main content
Log in

Meta-analysis and sexual selection: past studies and future possibilities

  • Ideas & Perspectives
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The action of sexual selection is highly variable among taxa. This creates challenges when trying to generalize (e.g. determine if a particular relationship exists based on its average strength, or if it varies in response to theoretically relevant factors). Consequently, accounting for moderating factors is likely to be crucial to explain differences in sexual selection among studies. In principle, given measures of key theoretical parameters we can predict the strength of sexual selection on different sexual signals, the benefits of mate choice, the extent of sex differences (e.g. in immune function or survival) and the likely life history trade-offs between investment into different sexual traits (e.g. sperm vs. courtship) or non-sexual traits (e.g. immune function, traits that increase longevity, parental care). How well does empirical data support theoretical expectations? First, we provide a short history of the use of meta-analysis in sexual selection studies. We present a table summarizing 94 meta-analyses that have asked questions about sexual selection or allied topics of interest to those studying sexual selection (e.g. the link between heterozygosity and fitness). Second, we list the main ways that meta-analysis has been used in sexual selection work and provide illustrative examples. Third, we provide practical advice to identify questions that are ripe for meta-analysis. We highlight 11 sexual selection topics where meta-analyses are needed (e.g. there are no meta-analyses testing game theory models of fighting contests). Finally, we discuss some general issues that will arise as the use of meta-analysis in sexual selection studies becomes more sophisticated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Adams DC (2008) Phylogenetic meta-analysis. Evolution 62:567–572

    PubMed  Google Scholar 

  • Akcay E, Roughgarden J (2007) Extra-pair paternity in birds: review of the genetic benefits. Evol Ecol Res 9:855–868

    Google Scholar 

  • Albrecht T, Kreisinger J, Piálek J (2006) The strength of direct selection against female promiscuity is associated with rates of extrapair fertilizations in socially monogamous songbirds. Am Nat 167:739–744

    PubMed  Google Scholar 

  • Arnqvist G, Kirkpatrick M (2005) The evolution of infidelity in socially monogamous passerines: the strength of direct and indirect selection on extrapair copulation behavior in females. Am Nat 165:S26–S37

    PubMed  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    PubMed  Google Scholar 

  • Arnqvist G, Wooster D (1995) Metaanalysis—synthesizing research findings in ecology and evolution. Trends Ecol Evol 10:236–240

    PubMed  CAS  Google Scholar 

  • Arnqvist G, Rowe L, Krupa JJ, Sih A (1996) Assortative mating by size: a meta-analysis of mating patterns in water striders. Evol Ecol 10:265–284

    Google Scholar 

  • Beirinckx K, Van Gossum H, Lajuenesse M, Forbes MR (2006) Sex biases in dispersal and philopatry: insights from a meta-analysis based on capture-mark-recapture studies of damselflies. Oikos 113:539–547

    Google Scholar 

  • Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behavior: a meta-analysis. Anim Behav 77:771–783

    Google Scholar 

  • Bernasconi G, Hellriegel B (2005) Fertilization competence and sperm size variation in sperm-heteromorphic insects. Evol Ecol 19:45–54

    Google Scholar 

  • Blackburn TM, Cassey P, Lockwood JL (2009) The role of species traits in the establishment success of exotic birds. Glob Change Biol 15:2852–2860

    Google Scholar 

  • Blanckenhorn WU, Stillwell RC, Young KA, Fox CW, Ashton KG (2006) When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution 60:2004–2011

    PubMed  Google Scholar 

  • Blows M (2007) Complexity for complexity’s sake? J Evol Biol 20:39–44

    Google Scholar 

  • Boncoraglio G, Saino N (2007) Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct Ecol 21:134–142

    Google Scholar 

  • Bonduriansky R (2007) Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution 61:838–849

    PubMed  Google Scholar 

  • Boonekamp JJ, Ros AHF, Verhulst S (2008) Immune activation suppresses plasma testosterone level: a meta-analysis. Biol Lett 4:741–744

    PubMed  Google Scholar 

  • Briffa M, Sneddon LU (2010) Contest behaviour. In: Westneat DF, Fox CW (eds) Evolutionary behavioural ecology. Oxford University Press, Oxford, pp 248–265

    Google Scholar 

  • Britten HB (1996) Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50:2158–2164

    Google Scholar 

  • Brown GR, Silk JB (2002) Reconsidering the null hypothesis: is maternal rank associated with birth sex ratios in primate groups? Proc Natl Acad Sci USA 99:11252–11255

    PubMed  CAS  Google Scholar 

  • Burley N (1986) Sex-ratio manipulation in color-banded populations of zebra finches. Evolution 40:1191–1206

    Google Scholar 

  • Cameron EZ (2004) Facultative adjustment of mammalian sex ratios in support of the Trivers–Willard hypothesis: evidence for a mechanism. Proc R Soc B 271:1723–1728

    PubMed  Google Scholar 

  • Candolin U, Heuschele J (2008) Is sexual selection beneficial during adaptation to environmental change? Trend Ecol Evol 23:446–452

    Google Scholar 

  • Cassey P, Ewen JG, Blackburn TM, Møller AP (2004) A survey of publication bias within evolutionary ecology. Proc R Soc B 271:S451–S454

    PubMed  Google Scholar 

  • Cassey P, Ewen JG, Møller AP (2006) Facultative primary sex ratio variation: a lack of evidence in birds (vol 271 pg 1277 2004). Proc R Soc B 273:3129–3130

    PubMed  Google Scholar 

  • Castellanos MC, Verdú M (2012) Meta-analysis of meta-analyses in plant evolutionary ecology. Evol Ecol (in press)

  • Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC (2009) A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 18:2746–2765

    PubMed  CAS  Google Scholar 

  • Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC (2011) A quantitative review of heterozygosity-fitness correlations in animal populations (correction). Mol Ecol 20:2655

    CAS  Google Scholar 

  • Chenoweth SF, McGuigan K (2010) The genetic basis of sexually selected variation. Ann Rev Ecol Evol Syst 41:81–101

    Google Scholar 

  • Cleasby IR, Nakagawa S (2012) The influence of male age on within-pair and extra-pair paternity in passerines. Ibis (in press)

  • Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983

    PubMed  CAS  Google Scholar 

  • Cotton S, Fowler K, Pomiankowski A (2004) Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc R Soc B 271:771–783

    PubMed  Google Scholar 

  • Cotton S, Small J, Pomiankowski A (2006) Sexual selection and condition-dependent mate preferences. Curr Biol 16:R755–R765

    PubMed  CAS  Google Scholar 

  • DelBarco-Trillo J (2011) Adjustment of sperm allocation under high risk of sperm competition across taxa: a meta-analysis. J Evol Biol 24:1706–1714

    PubMed  CAS  Google Scholar 

  • Dubois F, Cezilly F (2002) Breeding success and mate retention in birds: a meta-analysis. Behav Ecol Sociobiol 52:357–364

    Google Scholar 

  • Edward DA, Fricke C, Chapman T (2010) Adaptations to sexual selection and sexual conflict: insights from experimental evolution and artificial selection. Phil Trans R Soc B 365:2541–2548

    PubMed  Google Scholar 

  • Eliassen S, Kokko H (2008) Current analyses do not resolve whether extra-pair paternity is male or female driven. Behav Ecol Sociobiol 62:1795–1804

    Google Scholar 

  • Evans JP (2010) Quantitative genetic evidence that males trade attractiveness for ejaculate quality in guppies. Proc R Soc B 277:3195–3201

    PubMed  Google Scholar 

  • Evans SR, Hinks AE, Wilkin TA, Sheldon BC (2010) Age sex and beauty: methodological dependence of age- and sex-dichromatism in the great tit Parus major. Biol J Linn Soc 101:777–796

    Google Scholar 

  • Ewen JG, Cassey P, Møller AP (2004) Facultative primary a lack of evidence sex ratio variation: a lack of evidence in birds? Proc R Soc B 271:1277–1282

    PubMed  Google Scholar 

  • Fiske P, Rintamaki PT, Karvonen E (1998) Mating success in lekking males: a meta-analysis. Behav Ecol 9:328–338

    Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Google Scholar 

  • Forsgren E, Amundsen T, Borg ÅA, Bjelvenmark J (2004) Unusually dynamic sex roles in a fish. Nature 429:551–554

    PubMed  CAS  Google Scholar 

  • Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol 65:47–55

    PubMed  Google Scholar 

  • Fox CW, Reed DH (2011) Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65:246–258

    PubMed  Google Scholar 

  • Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22:1367–1375

    PubMed  CAS  Google Scholar 

  • Garamszegi LZ (2005) Bird song and parasites. Behav Ecol Sociobiol 59:167–180

    Google Scholar 

  • Garamszegi LZ, Eens M (2004) Brain space for a learned task: strong intraspecific evidence for neural correlates of singing behavior in songbirds. Brain Res Rev 4:187–193

    Google Scholar 

  • Garamszegi LZ, Møller AP (2004) Extrapair paternity and the evolution of bird song. Behav Ecol 15:508–519

    Google Scholar 

  • Garamszegi LZ, Møller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol Rev 85:797–805

    PubMed  Google Scholar 

  • Garamszegi LZ, Møller AP (2011) Nonrandom variation in within-species sample size and missing data in phylogenetic comparative studies. Syst Biol 60:876–880

    PubMed  Google Scholar 

  • Garamszegi LZ, Torok J, Hegy G, Szöllõs E, Rosivall B, Eens M (2007) Age-dependent expression of song in the collared flycatcher, Ficedula albicollis. Ethology 113:246–256

    Google Scholar 

  • Gontard-Danek MC, Møller AP (1999) The strength of sexual selection: a meta-analysis of bird studies. Behav Ecol 10:476–486

    Google Scholar 

  • Gowaty PA (2008) Reproductive compensation. J Evol Biol 21:1189–1200

    PubMed  Google Scholar 

  • Griffin AS, Sheldon BC, West SA (2005) Cooperative breeders adjust offspring sex ratios to produce helpful helpers. Am Nat 166:628–632

    PubMed  Google Scholar 

  • Griffith SC (2007) The evolution of infidelity in socially monogamous passerines: Neglected components of direct and indirect selection. Am Nat 169:274–281

    PubMed  Google Scholar 

  • Griffith SC, Immler S (2009) Female infidelity and genetic compatibility in birds: the role of the genetically loaded raffle in understanding the function of extrapair paternity. J Avian Biol 40:97–101

    Google Scholar 

  • Griffith SC, Parker TH, Olson VA (2006) Melanin-versus carotenoid-based sexual signals: is the difference really so black and red? Anim Behav 71:749–763

    Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    PubMed  CAS  Google Scholar 

  • Gurevitch J, Morrow LL, Wallace A, Walsh JS (1992) A metaanalysis of competition in field experiments. Am Nat 140:539–572

    Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    PubMed  CAS  Google Scholar 

  • Hamilton WJ, Poulin R (1997) The Hamilton and Zuk hypothesis revisited: a meta-analytical approach. Behaviour 134:299–320

    Google Scholar 

  • Hardy ICW, Field SA (1998) Logistic analysis of animal contests. Anim Behav 56:787–792

    PubMed  Google Scholar 

  • Harper DGC (1999) Feather mites pectoral muscle condition wing length and plumage coloration of passerines. Anim Behav 58:553–562

    PubMed  Google Scholar 

  • Harris WE, Uller T (2009) Reproductive investment when mate quality varies: differential allocation versus reproductive compensation. Phil Trans R Soc B 364:1039–1048

    PubMed  Google Scholar 

  • Harrison F, Barta Z, Cuthill I, Székely T (2009) How is sexual conflict over parental care resolved? A meta-analysis. J Evol Biol 22:1800–1812

    PubMed  CAS  Google Scholar 

  • Hayward A, Gillooly JF (2011) The cost of sex: quantifying energetic investment in gamete production by males and females. PlosONE 6:e16557

    CAS  Google Scholar 

  • Hirschenhauser K, Oliveira RF (2006) Social modulation of androgens in male vertebrates: meta-analyses of the challenge hypothesis. Anim Behav 71:265–277

    Google Scholar 

  • Horváthová T, Nakagawa S, Uller T (2012) Strategic female reproductive investment in response to male attractiveness in birds. Proc R Soc B 279:163–170

    PubMed  Google Scholar 

  • Hunt J, Hodgson D (2010) What is fitness, and how do we measure it? In: Westneat DF, Fox CW (eds) Evolutionary behavioural ecology. Oxford University Press, Oxford, pp 46–70

    Google Scholar 

  • Hunt J, Brooks R, Jennions MD, Smith MJ, Bentsen CL, Bussière LF (2004) High-quality male field crickets invest heavily in sexual display but die young. Nature 432:1024–1027

    PubMed  CAS  Google Scholar 

  • Hunt J, Breuker CJ, Sadowski JA, Moore AJ (2009) Male-male competition, female mate choice and their interaction: determining total sexual selection. J Evol Biol 22:13–26

    PubMed  Google Scholar 

  • Jennions MD, Møller AP (2002) Relationships fade with time: a meta-analysis of temporal trends in publication in ecology and evolution. Proc R Soc B 269:43–48

    PubMed  Google Scholar 

  • Jennions MD, Møller AP, Petrie M (2001) Sexually selected traits and adult survival: a meta-analysis. Q Rev Biol 76:3–36

    PubMed  CAS  Google Scholar 

  • Jennions MD, Kokko H, Klug H (2012a) The opportunity to be misled in studies of sexual selection. J Evol Biol 25:591–598

    PubMed  CAS  Google Scholar 

  • Jennions MD, Lortie C, Koricheva J (2012b) Using meta-analysis to test ecological and evolutionary theory. In: Koricheva J, Gurevitch J, Mengersen K (eds) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton (in press)

  • Jennions MD, Lortie C, Rosenberg M, Rothstein H (2012c) Publication and related biases. In: Koricheva J, Gurevitch J, Mengersen K (eds) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton (in press)

  • Jones KS, Nakagawa S, Sheldon BC (2009) Environmental sensitivity in relation to size and sex in birds: meta-regression analysis. Am Nat 174:122–133

    PubMed  Google Scholar 

  • Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and Giroux, New York

    Google Scholar 

  • Kelly CD (2008) The interrelationships between resource-holding potential, resource-value and reproductive success in territorial males: how much variation can we explain? Behav Ecol Sociobiol 62:855–871

    Google Scholar 

  • Kelly CD, Jennions MD (2011) Sexual selection and sperm quantity: meta-analyses of strategic ejaculation. Biol Rev 86:863–884

    PubMed  Google Scholar 

  • Kempenaers B (2007) Mate choice and genetic quality: a review of the heterozygosity theory. Adv Study Behav 37:189–278

    Google Scholar 

  • Kingsolver J, Diamond S, Siepelski A, Carlson S (2012) Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol Ecol (in press)

  • Knowles SCL, Nakagawa S, Sheldon BC (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct Ecol 23:405–415

    Google Scholar 

  • Kodric-Brown A, Sibly RM, Brown JH (2006) The allometry of ornaments and weapons. Proc Natl Acad Sci USA 103:8733–8738

    PubMed  CAS  Google Scholar 

  • Kokko H (2001) Fisherian and ‘good genes’ benefits of mate choice: how (not) to distinguish between them. Ecol Lett 4:322–326

    Google Scholar 

  • Kokko H (2011) Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos 120:1826–1837

    Google Scholar 

  • Kokko H, Jennions MD (2008) Parental investment, sexual selection and sex ratios. J Evol Biol 21:919–948

    PubMed  Google Scholar 

  • Kokko H, Ots I (2006) When not to avoid inbreeding. Evolution 60:467–475

    PubMed  Google Scholar 

  • Kokko H, Rankin DJ (2006) Lonely hearts or sex in the city? Density-dependent effects in mating systems. Phil Trans R Soc B 361:319–334

    PubMed  Google Scholar 

  • Kokko H, Jennions MD, Brooks RC (2006a) Unifying and testing models of sexual selection. Ann Rev Ecol Evol Syst 37:43–66

    Google Scholar 

  • Kokko H, López-Sepulcre A, Morrell LJ (2006b) From hawks and doves to self-consistent games of territorial behavior. Am Nat 167:901–912

    Google Scholar 

  • Koricheva J, Gurevitch J, Mengersen K (2012) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Kraaijeveld KF, Kraaijeveld-Smit JL, Komdeur J (2007) The evolution of mutual ornamentation. Anim Behav 74:657–677

    Google Scholar 

  • Kraaijeveld KF, Kraaijeveld-Smit JL, Maan ME (2011) Sexual selection and speciation: the comparative evidence revisited. Biol Rev 86:367–377

    PubMed  Google Scholar 

  • Krasnov BR, Stanko M, Matthee SM, Laudisoit A, Leirs H, Khokhlova IS, Korallo-Vinarskaya NP, Vinarski MV, Morand S (2011) Male hosts drive infracommunity structure of ectoparasites. Oecologia 166:1099–1110

    PubMed  Google Scholar 

  • Lajeunesse MJ (2009) Meta-analysis and the comparative phylogenetic method. Am Nat 174:369–381

    PubMed  Google Scholar 

  • Lea AJ, Blumstein DT (2011) Ontogenetic and sex differences influence alarm call responses in mammals: a meta-analysis. Ethology 117:839–851

    Google Scholar 

  • Leamy LJ, Klingenberg CP (2005) The genetics and evolution of fluctuating asymmetry. Ann Rev Ecol Evol Syst 36:1–21

    Google Scholar 

  • Leung B, Forbes MR (1996) Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by meta-analysis. Ecoscience 3:400–413

    Google Scholar 

  • Matthe S, McGeoch MA, Krasnov BR (2010) Parasite-specific variation and the extent of male-biased parasitism; an example with a South African rodent and ectoparasitic arthropods. Parasitology 137:651–660

    Google Scholar 

  • McCurdy DG, Shutler D, Mullie A, Forbes MR (1998) Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82:303–312

    CAS  Google Scholar 

  • Meunier JS, Pinto F, Burri T, Roulin A (2011) Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav Ecol Sociobiol 65:559–567

    Google Scholar 

  • Milner RNC, Detto T, Jennions MD, Backwell PRY (2010) Experimental evidence for a seasonal shift in the strength of a female mating preference. Behav Ecol 21:311–316

    Google Scholar 

  • Møller AP, Alatalo RV (1999) Good-genes effects in sexual selection. Proc R Soc B 266:85–91

    Google Scholar 

  • Møller AP, Jennions MD (2001) How important are direct fitness benefits of sexual selection? Naturwissenschaften 88:401–415

    PubMed  Google Scholar 

  • Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500

    Google Scholar 

  • Møller AP, Ninni P (1998) Sperm competition and sexual selection: a meta-analysis of paternity studies of birds. Behav Ecol Sociobiol 43:345–358

    Google Scholar 

  • Møller AP, Saino N (2004) Immune response and survival. Oikos 104:299–304

    Google Scholar 

  • Møller AP, Thornhill R (1997) A meta-analysis of the heritability of developmental stability. J Evol Biol 10:1–16

    Google Scholar 

  • Møller AP, Thornhill R (1998a) Bilateral symmetry and sexual selection: a meta-analysis. Am Nat 151:174–192

    PubMed  Google Scholar 

  • Møller AP, Thornhill R (1998b) Male parental care, differential parental investment by females and sexual selection. Anim Behav 55:1507–1515

    PubMed  Google Scholar 

  • Møller AP, Christe P, Erritzoe J, Maravez J (1998) Condition, disease and immune defence. Oikos 83:301–306

    Google Scholar 

  • Møller AP, Christe P, Lux E (1999) Parasitism, host immune function and sexual selection. Q Rev Biol 74:3–20

    PubMed  Google Scholar 

  • Møller AP, Thornhill R, Gangestad SW (2005) Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim Behav 70:497–506

    Google Scholar 

  • Molloy PP, Reynolds JD, Gage MJG, Mosqueria I, Cote IM (2008) Links between sex change and fish densities in marine protected areas. Biol Conserv 141:187–197

    Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    PubMed  CAS  Google Scholar 

  • Morrissey M, Hadfield J (2012) Directional selection in temporally replicated studies is remarkably consistent. Evolution (in press)

  • Muller W, Eens M (2009) Elevated yolk androgen levels and the expression of multiple sexually selected male characters. Hormones Behav 55:175–181

    Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 779(82):591–605

    Google Scholar 

  • Nakagawa S, Santos ESA (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol (in press)

  • Nakagawa S, Ockendon N, Gillespie DOS, Hatchwell BJ, Burke T (2007) Assessing the function of house sparrows’ bib size using a flexible meta-analysis method. Behav Ecol 18:831–840

    Google Scholar 

  • Nunn CL, Lindenfors P, Pursall ER, Rolff J (2009) On sexual dimorphism in immune function. Phil Trans R Soc B 364:61–69

    PubMed  Google Scholar 

  • O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51

    Google Scholar 

  • Palmer AR (1999) Detecting publication bias in meta-analyses: a case study of fluctuating asymmetry and sexual selection. Am Nat 154:220–233

    Google Scholar 

  • Palmer AR (2000) Quasireplication and the contract of error: lessons from sex ratios, heritabilities and fluctuating asymmetry. Ann Rev Ecol Syst 31:441–480

    Google Scholar 

  • Parker TH, Ligon JD (2003) Female mating preferences in red junglefowl: a meta-analysis. Ethol Ecol Evol 15:63–72

    Google Scholar 

  • Parker TH, Barr IR, Griffith SC (2006) The blue tit’s song is an inconsistent signal of male condition. Behav Ecol 17:1029–1040

    Google Scholar 

  • Peek MS, Leffler AJ, Flint SD, Ryel RJ (2003) How much variance is explained by ecologists? Additional perspectives. Oecologia 137:161–170

    PubMed  Google Scholar 

  • Poissant J, Wilson AJ, Coltman DW (2010) Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64:97–107

    PubMed  Google Scholar 

  • Pomiankowski A, Møller AP (1995) A resolution of the lek paradox. Proc R Soc B 1357:21–29

    Google Scholar 

  • Poulin R (1996a) Helminth growth in vertebrate hosts: does host sex matter? Int J Parasitol 26:1311–1315

    PubMed  CAS  Google Scholar 

  • Poulin R (1996b) Sexual inequalities in helminth infections: a cost of being a male? Am Nat 147:287–295

    Google Scholar 

  • Poulin R (2000) Manipulation of host behaviour by parasites: a weakening paradigm? Proc R Soc B 267:787–792

    PubMed  CAS  Google Scholar 

  • Poulin R, Forbes MR (2012) Meta-analysis and research on host-parasite interactions: past and future. Evol Ecol (in press)

  • Randler C (2008) Mating patterns in avian hybrid zones—a meta-analysis and review. Ardea 96:73–80

    Google Scholar 

  • Ratikanen I, Kokko H (2010) Differential allocation and compensation: who deserves the silver spoon. Behav Ecol 21:192–200

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 117:230–237

    Google Scholar 

  • Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trend Ecol Evol 15:421–425

    Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Google Scholar 

  • Santos ES, Scheck AD, Nakagawa S (2011) Dominance and plumage traits: meta-analysis and metaregression analysis. Anim Behav 82:3–19

    Google Scholar 

  • Schalk G, Forbes MR (1997) Male biases in parasitism of mammals: effects of study type host age and parasite taxon. Oikos 78:67–74

    Google Scholar 

  • Schino G (2004) Birth sex ratio and social rank: consistency and variability within and between primate groups. Behav Ecol 15:850–856

    Google Scholar 

  • Schmoll T (2011) A review and perspective on context-dependent genetic effects of extra-pair mating in birds. J Ornithol 152:S265–S277

    Google Scholar 

  • Sheldon BC (2000) Differential allocation: tests, mechanisms and implications. Trends Ecol Evol 15:398–402

    Google Scholar 

  • Sheldon BC, West SA (2004) Maternal dominance maternal condition and offspring sex ratio in ungulate mammals. Am Nat 163:40–54

    PubMed  Google Scholar 

  • Sheridan LAD, Poulin R, Ward DF, Zuk M (2000) Sex differences in parasitic infections among arthropod hosts: is there a male bias? Oikos 88:327–334

    Google Scholar 

  • Siepielski AM, DiBattista JD, Carlson SD (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12:1261–1276

    PubMed  Google Scholar 

  • Silk J, Willoughby BE, Brown GR (2005) Maternal rank and local resource competition do not predict birth sex ratios in wild baboons. Proc R Soc B 272:859–864

    PubMed  Google Scholar 

  • Simmons LW (2005) The evolution of polyandry: sperm competition, sperm selection and offspring viability. Ann Rev Ecol Evol Syst 36:125–146

    Google Scholar 

  • Simmons LW, Tomkins JL, Kotiaho JS, Hunt J (1999) Fluctuating paradigm. Proc R Soc B 266:593–595

    Google Scholar 

  • Simons MJP, Verhulst S (2011) Zebra finch females prefer males with redder bills independent of song rate-a meta-analysis. Behav Ecol 22:755–762

    Google Scholar 

  • Slatyer RA, Mautz BS, Backwell PRY, Jennions MD (2012) Estimating genetic benefits of polyandry from experimental studies: a meta-analysis. Biol Rev 87:1–33

    PubMed  Google Scholar 

  • Smith BR, Blumstein DT (2008) Fitness consequences of personality: a meta-analysis. Behav Ecol 19:448–455

    Google Scholar 

  • Snook RR (2005) Sperm in competition: not playing by the numbers. Trends Ecol Evol 20:46–53

    PubMed  Google Scholar 

  • Sokolovska N, Rowe L, Johansson F (2000) Fitness and body size in mature odonates. Ecol Entomol 25:239–248

    Google Scholar 

  • Soma M, Garamszegi LZ (2011) Rethinking birdsong evolution: meta-analysis of the relationship between song complexity and reproductive success. Behav Ecol 22:363–371

    Google Scholar 

  • South A, Lewis SM (2011) The influence of male ejaculate quantity on female fitness: a meta-analysis. Biol Rev 86:299–309

    PubMed  Google Scholar 

  • Thornhill R, Møller AP (1998) The relative importance of size and asymmetry in sexual selection. Behav Ecol 9:546–551

    Google Scholar 

  • Thornhill R, Møller AP, Gangestad SW (1999) The biological significance of fluctuating asymmetry and sexual selection: A reply to Palmer. Amer Nat 154:234–241

    Google Scholar 

  • Torres-Vila LM, Jennions MD (2005) Male mating history and female fecundity in the Lepidoptera: do male virgins make better partners? Behav Ecol Sociobiol 57:318–326

    Google Scholar 

  • Torres-Vila LM, Rodriguez-Molina MC, Jennions MD (2004) Polyandry and fecundity in the Lepidoptera: can methodological and conceptual approaches bias outcomes? Behav Ecol Sociobiol 55:315–324

    Google Scholar 

  • Vanderwerf E (1992) Lack clutch size hypothesis—an examination of the evidence using meta-analysis. Ecology 73:1699–1705

    Google Scholar 

  • Vøllestad LA, Hindar K, Møller AP (1999) A meta-analysis of fluctuating asymmetry in relation to heterozygosity. Heredity 83:206–218

    PubMed  Google Scholar 

  • Wehi PM, Nakagawa S, Trewick SA, Morgan-Richards M (2011) Does predation result in adult sex ratio skew in a sexually dimorphic insect genus? J Evol Biol 24:2321–2328

    PubMed  CAS  Google Scholar 

  • Weir LK, Grant JWA, Hutchings JA (2011) The influence of operational sex ratio on the intensity of competition for mates. Am Nat 177:167–176

    PubMed  Google Scholar 

  • West SA, Sheldon BC (2002) Constraints in the evolution of sex ratio adjustment. Science 295:1685–1688

    PubMed  CAS  Google Scholar 

  • West SA, Shuker DM, Sheldon BC (2005) Sex-ratio adjustment when relatives interact: a test of constraints on adaptation. Evolution 59:1211–1228

    PubMed  Google Scholar 

  • Westlake KP, Rowe L (1999) Developmental costs of male sexual traits in the water strider Rheumatobates rileyi. Can J Zool 77:917–922

    Google Scholar 

  • Yasukawa K, Enstrom DA, Parker PG, Jones TC (2010) Male Red-winged Blackbirds with experimentally dulled epaulets experience no disadvantage in sexual selection. J Field Ornithol 81:31–41

    Google Scholar 

Download references

Acknowledgments

We thank Isobel Booksmythe and Brian Mautz for feedback on a draft of this paper. We thank Lazlo Garamszegi and an anonymous reviewer for their constructive comments. We thank the many colleagues who have chatted with us about meta-analyses, most notably the members of the NCEAS working group on meta-analysis in ecology and evolution (especially Kerrie Mengersen, Jessica Gurevitch and Julia Koricheva). Finally, we extend special thanks to Shinichi Nakagawa for his patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Jennions.

Additional information

Order of authorship is alphabetical.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennions, M.D., Kahn, A.T., Kelly, C.D. et al. Meta-analysis and sexual selection: past studies and future possibilities. Evol Ecol 26, 1119–1151 (2012). https://doi.org/10.1007/s10682-012-9567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9567-1

Keywords

Navigation