Skip to main content

Advertisement

Log in

Meta-analysis and research on host–parasite interactions: past and future

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Host–parasite interactions are characterised by a lack of stable species-specific traits that limits generalisations one can make even about particular host or parasite species. For instance, the virulence, life history traits or transmission mode of a given parasite species can depend on which of its suitable hosts it infects. In the search for general rules or patterns, meta-analysis provides a possible solution to the challenges posed by the highly variable outcomes of host–parasite interactions. It allows an estimate of the overall association between any factor and its biological response that transcends the particulars of given host and parasite taxonomic combinations. In this review, we begin with a historical overview of the use of meta-analysis in research on the ecology and evolution of host–parasite interactions. We then identify several key conceptual advances that were made possible only through meta-analytical synthesis. For example, meta-analysis revealed the predominant association between rates of host and parasite gene flow and local adaptation, as well as an unexpected latitudinal gradient in parasite virulence, or parasite-induced host mortality. Finally, we propose some areas of research on host–parasite interactions that are based on a mature theoretical foundation and for which there now exist sufficient primary results to make them ripe for meta-analysis. The search for the processes causing variability in parasite species richness among host species, and the link between the expression of host resistance and the specificity of parasites, are two such research areas. The main objective of this review is to promote meta-analysis as a synthetic tool overriding the idiosyncrasies of specific host–parasite combinations and capable of uncovering the universal trends, if any, in the evolutionary ecology of parasitism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackerman JT, Eagles-Smith CA, Takekawa JY, Demers SA, Adelsbach TL, Bluso JD, Miles AK, Warnock N, Suchanek TH, Schwarzbach SE (2007) Mercury concentrations and space use of pre-breeding American avocets and black-necked stilts in San Francisco bay. Sci Tot Environ 384:452–466

    Article  CAS  Google Scholar 

  • Adams DC (2008) Phylogenetic meta-analysis. Evolution 62:567–572

    Article  PubMed  Google Scholar 

  • Arnqvist G, Wooster D (1995) Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol Evol 6:236–240

    Article  Google Scholar 

  • Arriero E, Møller AP (2008) Host ecology and life history traits associated with blood parasite species richness in birds. J Evol Biol 21:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Bauer A, Trouvé S, Grégoire A, Bollache L, Cézilly F (2000) Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native and invader gammarid species. Int J Parasitol 30:1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Blanar CA, Munkittrick KR, Houlahan J, MacLatchy DL, Marcogliese DJ (2009) Pollution and parasitism in aquatic animals: a meta-analysis of effect size. Aquatic Toxicol 93:18–28

    Article  CAS  Google Scholar 

  • Boissier J, Moné H (2001) Relationship between worm burden and male proportion in Schistosoma mansoni experimentally infected rodents and primates: a meta-analytical approach. Int J Parasitol 31:1597–1599

    Article  PubMed  CAS  Google Scholar 

  • Boissier J, Morand S, Moné H (1999) A review of performance and pathogenicity of male and female Schistosoma mansoni during the life-cycle. Parasitology 119:447–454

    Article  PubMed  Google Scholar 

  • Boonekamp JJ, Ros AHF, Verhulst S (2008) Immune activation suppresses plasma testosterone level: a meta-analysis. Biol Lett 4:741–744

    Article  PubMed  Google Scholar 

  • Bordes F, Blumstein DT, Morand S (2007) Rodent sociality and parasite diversity. Biol Lett 3:692–694

    Article  PubMed  Google Scholar 

  • Bordes F, Morand S, Krasnov B, Poulin R (2010) Parasite diversity and latitudinal gradients in terrestrial mammals. In: Morand S, Krasnov B (eds) The biogeography of host–parasite interactions. Oxford University Press, Oxford, pp 89–98

    Google Scholar 

  • Burger J (2007) A framework and methods for incorporating gender-related issues in wildlife risk assessment: gender-related differences in metal levels and other contaminants as a case study. Environ Res 104:153–162

    Article  PubMed  CAS  Google Scholar 

  • Busch JW, Neiman M, Koslow JM (2004) Evidence for maintenance of sex by pathogens in plants. Evolution 58:2584–2590

    PubMed  Google Scholar 

  • Chandler M, Cabana G (1991) Sexual dichromatism in North American freshwater fish: do parasites play a role? Oikos 60:322–328

    Article  Google Scholar 

  • Clayton DH (1991) The influence of parasites on host sexual selection. Parasitol Today 7:329–334

    Article  PubMed  CAS  Google Scholar 

  • Clayton DH, Tompkins DM (1994) Ectoparasite virulence is linked to mode of transmission. Proc R Soc Lond B 256:211–217

    Article  CAS  Google Scholar 

  • Clayton DH, Walther BA (2001) Influence of host ecology and morphology on the diversity of Neotropical bird lice. Oikos 94:455–467

    Article  Google Scholar 

  • Constantini D, Møller AP (2009) Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Physiol A 153:339–344

    Article  CAS  Google Scholar 

  • Côté IM, Poulin R (1995) Parasitism and group size in social animals: a meta-analysis. Behav Ecol 6:159–165

    Article  Google Scholar 

  • Cox FEG (2001) Concomitant infections, parasites and immune responses. Parasitology 122:S23–S38

    Article  PubMed  Google Scholar 

  • Dunn RR, Davies TJ, Harris NC, Gavin MC (2010) Global drivers of human pathogen richness and prevalence. Proc R Soc Lond B 277:2587–2597

    Article  Google Scholar 

  • Ferguson HM, Read AF (2002) Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol 18:256–261

    Article  PubMed  Google Scholar 

  • Gaba S, Gruner L, Cabaret J (2006) The establishment rate of a sheep nematode: revisiting classics using a meta-analysis of 87 experiments. Vet Parasitol 140:302–311

    Article  PubMed  CAS  Google Scholar 

  • Gandon S (2002) Local adaptation and the geometry of host-parasite coevolution. Ecol Lett 5:246–256

    Article  Google Scholar 

  • Gandon S, Michalakis Y (2002) Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. J Evol Biol 15:451–462

    Article  Google Scholar 

  • Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I (1996) Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc R Soc Lond B 263:1003–1009

    Article  Google Scholar 

  • Garamszegi LZ (2005) Bird song and parasites. Behav Ecol Sociobiol 59:167–180

    Article  Google Scholar 

  • Gates S (2002) Review of methodology of quantitative reviews using meta-analysis in ecology. J Anim Ecol 71:547–557

    Article  Google Scholar 

  • Greischar MA, Koskella B (2007) A synthesis of experimental work on parasite local adaptation. Ecol Lett 10:418–434

    Article  PubMed  Google Scholar 

  • Grossman CJ (1985) Interactions between the gonadal steroids and the immune system. Science 227:257–261

    Article  PubMed  CAS  Google Scholar 

  • Gurevitch J, Curtis PS, Jones MH (2001) Meta-analysis in ecology. Adv Ecol Res 32:199–247

    Article  CAS  Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WJ, Poulin R (1997) The Hamilton and Zuk hypothesis revisited: a meta-analytical approach. Behaviour 134:299–320

    Article  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  PubMed  CAS  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, San Diego

    Google Scholar 

  • Hoeksema JD, Forde SE (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171:275–290

    Article  PubMed  Google Scholar 

  • Holt RD, Gomulkiewicz R (1997) How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149:563–572

    Article  Google Scholar 

  • Jaenike J (1996) Suboptimal virulence of an insect-parasitic nematode. Evolution 50:2241–2247

    Article  Google Scholar 

  • John JL (1995) Parasites and the avian spleen: helminths. Biol J Linn Soc 54:87–106

    Google Scholar 

  • Klein SL (2004) Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasit Immunol 26:247–264

    Article  CAS  Google Scholar 

  • Knowles SCL, Nakagawa S, Sheldon BC (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct Ecol 23:405–415

    Article  Google Scholar 

  • Koricheva J, Gurevitch J, Mengersen K (2012) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Vinarski M, Korallo-Vinarskaya N, Poulin R (2008) Geographical patterns of abundance: testing expectations of the ‘abundance optimum’ model in two taxa of ectoparasitic arthropods. J Biogeogr 35:2187–2194

    Article  Google Scholar 

  • Krasnov BR, Vinarski MV, Korallo-Vinarskaya NP, Mouillot D, Poulin R (2009) Inferring associations among parasitic gamasid mites from census data. Oecologia 160:175–185

    Article  PubMed  Google Scholar 

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    Article  PubMed  Google Scholar 

  • Lajeunesse MJ (2009) Meta-analysis and the comparative phylogenetic method. Am Nat 174:369–381

    Article  PubMed  Google Scholar 

  • Lajeunesse MJ (2010) Achieving synthesis with meta-analysis by combining and comparing all available studies. Ecology 91:2561–2564

    Article  PubMed  Google Scholar 

  • Lajeunesse MJ, Forbes MR (2002) Host range and local parasite adaptation. Proc R Soc Lond B 269:703–710

    Article  Google Scholar 

  • Lambrechts L, Scott TW (2009) Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proc R Soc Lond B 276:1369–1378

    Article  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Lindenfors P, Nunn CL, Jones KE, Cunningham AA, Sechrest W, Gittleman JL (2007) Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecol Biogeogr 16:496–509

    Article  Google Scholar 

  • Lively CM (1999) Migration, virulence, and the geographic mosaic of adaptation by parasites. Am Nat 153:S34–S47

    Article  Google Scholar 

  • Lively CM, Dybdahl MF, Jokela J, Osnas EE, Delph LF (2004) Host sex and local adaptation by parasites in a snail-trematode interaction. Am Nat 164:S6–S18

    Article  PubMed  Google Scholar 

  • Luque JL, Poulin R (2008) Linking ecology with parasite diversity in Neotropical fishes. J Fish Biol 72:189–204

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York

    Google Scholar 

  • McCurdy DG, Shutler D, Mullie A, Forbes MR (1998) Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82:303–312

    Article  CAS  Google Scholar 

  • Møller AP (1998) Evidence of larger impact of parasites on hosts in the tropics: investment in immune function within and outside the tropics. Oikos 82:265–270

    Article  Google Scholar 

  • Møller AP, Saino N (2004) Immune response and survival. Oikos 104:299–304

    Article  Google Scholar 

  • Møller AP, Christe P, Lux E (1999) Parasitism, host immune function, and sexual selection. Q Rev Biol 74:3–20

    Article  PubMed  Google Scholar 

  • Møller AP, Arriero E, Lobato E, Merino S (2009) A meta-analysis of parasite virulence in nestling birds. Biol Rev 84:567–588

    Article  PubMed  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    Article  PubMed  CAS  Google Scholar 

  • Moore J, Freehling M, Gotelli NJ (1994) Altered behavior in two species of blattid cockroaches infected with Moniliformis moniliformis (Acanthocephala). J Parasitol 80:220–223

    Article  PubMed  CAS  Google Scholar 

  • Morand S (1996) Life history traits in parasitic nematodes: a comparative approach for the search of invariants. Funct Ecol 10:210–218

    Article  Google Scholar 

  • Morand S, Poulin R (2000) Nematode parasite species richness and the evolution of spleen size in birds. Can J Zool 78:1356–1360

    Article  Google Scholar 

  • Morand S, Poulin R (2003) Phylogenies, the comparative method and parasite evolutionary ecology. Adv Parasitol 54:281–302

    Article  PubMed  Google Scholar 

  • Nagel L, Zanuttig M, Forbes MR (2010a) Selection on mite engorgement size affects mite spacing, host damselfly flight, and host resistance. Evol Ecol Res 12:653–665

    Google Scholar 

  • Nagel L, Robb T, Forbes MR (2010b) Inter-annual variation in prevalence and intensity of mite parasitism relates to appearance and expression of damselfly resistance. BMC Ecol 10:5

    Google Scholar 

  • Nunn CL, Altizer S, Jones KE, Sechrest W (2003) Comparative tests of parasite species richness in primates. Am Nat 162:597–614

    Article  PubMed  Google Scholar 

  • Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli AP, Hudson PJ (2006) Localized deer absence leads to tick amplification. Ecology 87:1981–1986

    Article  PubMed  Google Scholar 

  • Pietrock M, Marcogliese DJ (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol 19:293–299

    Article  PubMed  Google Scholar 

  • Poulin R (1994) Meta-analysis of parasite-induced behavioural changes. Anim Behav 48:137–146

    Article  Google Scholar 

  • Poulin R (1995) Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecol Monogr 65:283–302

    Article  Google Scholar 

  • Poulin R (1996a) The evolution of life history strategies in parasitic animals. Adv Parasitol 37:107–134

    Article  PubMed  CAS  Google Scholar 

  • Poulin R (1996b) Sexual inequalities in helminth infections: a cost of being a male? Am Nat 147:287–295

    Article  Google Scholar 

  • Poulin R (1996c) Helminth growth in vertebrate hosts: does host sex matter? Int J Parasitol 26:1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Poulin R (1997) Species richness of parasite assemblages: evolution and patterns. Annu Rev Ecol Syst 28:341–358

    Article  Google Scholar 

  • Poulin R (2000a) Manipulation of host behaviour by parasites: a weakening paradigm? Proc R Soc Lond B 267:787–792

    Article  CAS  Google Scholar 

  • Poulin R (2000b) Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. J Fish Biol 56:123–137

    Article  Google Scholar 

  • Poulin R (2001) Another look at the richness of helminth communities in tropical freshwater fish. J Biogeogr 28:737–743

    Article  Google Scholar 

  • Poulin R (2004) Macroecological patterns of species richness in parasite assemblages. Basic Appl Ecol 5:423–434

    Article  Google Scholar 

  • Poulin R (2006) Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132:143–151

    Article  PubMed  CAS  Google Scholar 

  • Poulin R (2010a) Decay of similarity with host phylogenetic distance in parasite faunas. Parasitology 137:733–741

    Article  PubMed  CAS  Google Scholar 

  • Poulin R (2010b) The scaling of dose with host body mass and the determinants of success in experimental cercarial infections. Int J Parasitol 40:371–377

    Article  PubMed  Google Scholar 

  • Poulin R (2010c) The selection of experimental doses and their importance for parasite success in metacercarial infection studies. Parasitology 137:889–898

    Article  PubMed  CAS  Google Scholar 

  • Poulin R, Krasnov BR, Mouillot D (2011) Host specificity in phylogenetic and geographic space. Trends Parasitol 27:355–361

    Article  PubMed  Google Scholar 

  • Randhawa HS, Poulin R (2010) Determinants of tapeworm species richness in elasmobranch fishes: untangling environmental and phylogenetic influences. Ecography 33:866–877

    Article  Google Scholar 

  • Rauque CA, Paterson RA, Poulin R, Tompkins DM (2011) Do different parasite species interact in their effects on host fitness? A case study on parasites of the amphipod Paracalliope fluviatilis. Parasitology 138:1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Read AF (1987) Comparative evidence supports the Hamilton and Zuk hypothesis on parasites and sexual selection. Nature 328:68–70

    Article  Google Scholar 

  • Read AF, Harvey PH (1989) Reassessment of comparative evidence for Hamilton and Zuk theory on the evolution of secondary sexual characters. Nature 339:618–620

    Article  Google Scholar 

  • Robar N, Burness G, Murray DL (2010) Tropics, trophics and taxonomy: the determinants of parasite-associated host mortality. Oikos 119:1273–1280

    Article  Google Scholar 

  • Robar N, Murray DL, Burness G (2011) Effects of parasites on host energy expenditure: the resting metabolic rate stalemate. Can J Zool 89:1146–1155

    Article  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Article  Google Scholar 

  • Rohr JR, McCoy KA (2010) A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ Health Perspect 118:20–32

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rutrecht ST, Brown MJF (2009) Differential virulence in a multiple-host parasite of bumble bees: resolving the paradox of parasite survival? Oikos 118:941–949

    Article  Google Scholar 

  • Schalk G, Forbes MR (1997) Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78:67–74

    Article  Google Scholar 

  • Schmid-Hempel P, Ebert D (2003) On the evolutionary ecology of specific immune defence. Trends Ecol Evol 18:27–32

    Article  Google Scholar 

  • Sheridan LAD, Poulin R, Ward DF, Zuk M (2000) Sex differences in parasitic infections among arthropod hosts: is there a male bias? Oikos 88:327–334

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 15:393–430

    Article  Google Scholar 

  • Snow LC, Michael E (2002) Transmission dynamics of lymphatic filariasis: density-dependence in the uptake of Wuchereria bancrofti microfilariae by vector mosquitoes. Med Vet Entomol 16:409–423

    Article  PubMed  CAS  Google Scholar 

  • Snow LC, Bockarie MJ, Michael E (2006) Transmission dynamics of lymphatic filariasis: vector-specific density dependence in the development of Wuchereria bancrofti infective larvae in mosquitoes. Med Vet Entomol 20:261–272

    Article  PubMed  CAS  Google Scholar 

  • Sorci G, Møller AP (1997) Comparative evidence for a positive correlation between haematozoan prevalence and mortality in waterfowl. J Evol Biol 10:731–741

    Article  Google Scholar 

  • Stiling P, Cornelissen T (2005) What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol Control 34:236–246

    Article  Google Scholar 

  • Thomas F, Renaud F, Rousset F, Cézilly F, De Meeüs T (1995) Differential mortality of two closely related host species induced by one parasite. Proc R Soc Lond B 260:349–352

    Article  Google Scholar 

  • Thomas F, Brown SP, Sukhdeo M, Renaud F (2002) Understanding parasite strategies: a state-dependent approach? Trends Parasitol 18:387–390

    Article  PubMed  Google Scholar 

  • Torres J, Miquel J, Casanova JC, Ribas A, Feliu C, Morand S (2006) Parasite species richness of Iberian carnivores: influences of host density and range distribution. Biodivers Conserv 15:4619–4632

    Article  Google Scholar 

  • Vidal-Martinez VM, Pech D, Sures B, Purucker ST, Poulin R (2010) Can parasites really reveal environmental impact? Trends Parasitol 26:44–51

    Article  PubMed  Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Scott Findlay, Marc Lajeunesse, and Stacey Robinson for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Poulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulin, R., Forbes, M.R. Meta-analysis and research on host–parasite interactions: past and future. Evol Ecol 26, 1169–1185 (2012). https://doi.org/10.1007/s10682-011-9544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9544-0

Keywords

Navigation