Skip to main content
Log in

Temporal stability of niche use exposes sympatric Arctic charr to alternative selection pressures

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

There is now strong evidence that foraging niche specialisation plays a critical role in the very early stages of resource driven speciation. Here we test critical elements of models defining this process using a known polymorphic population of Arctic charr from subarctic Norway. We test the long-term stability of niche specialisation amongst foraging predators and discuss the possibility that contrasting foraging specialists are exposed to differing selection regimes. Inter-individual foraging niche stability was measured by combining two time-integrated ecological tracers of the foraging niche (each individual’s δ13C and δ15N stable isotope (SI) signatures and their food borne parasite fauna) with a short-term measure of foraging niche use (stomach contents composition). Three dietary subgroups of predators were identified, including zooplankton, gammarid and benthivore specialists foragers. Zooplanktivorous specialists had muscle low in δ 13C, a high abundance of parasites transmitted from pelagic copepods, a smaller head, longer snout and a more slender body-form than gammaridivorous specialist individuals which had muscle more enriched in δ 13C and high abundance of parasites transmitted from benthic Gammarus. Benthivorous individuals were intermediate between the other two foraging groups according to muscle SI-signals (δ13C) and loadings of parasites transmitted from both copepods and Gammarus. The close relationship between subgroups identified by stomach contents, time-integrated tracers of niche use (SI and parasites) and functional trophic morphology (niche adaptations) demonstrate a long-term temporally stable niche use of each individual predator. Differential habitat use and contrasting parasite communities and loadings, show differential exposure to different suites of selection pressures for different foraging specialists. Results also show that individual specialisation in trophic behaviour and thus exposure to different suites of selection pressures are stable over time, and thus provide a platform for disruptive selection to operate within this sympatric system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams PA (2006) The effects of switching behaviour on the evolutionary diversification of generalist consumers. Am Nat 168:645–659

    Article  PubMed  Google Scholar 

  • Adams CE, Huntingford FA (2002a) Inherited differences in head allometry in polymorphic charr from Loch Rannoch, Scotland. J Fish Biol 60:515–520

    Article  Google Scholar 

  • Adams CE, Huntingford FA (2002b) The functional significance of inherited differences in feeding morphology in sympatric polymorphic population of Arctic charr. Evol Ecol 16:15–25

    Article  Google Scholar 

  • Adams CE, Huntingford FA (2004) Incipient speciation driven by phenotypic plasticity? Evidence from sympatric populations of Arctic charr. Biol J Linn Soc 81:611–618

    Article  Google Scholar 

  • Adams CE, Fraser D, Huntingford FA, Greer RB, Askew CM, Walker AF (1998) Trophic polymorphism amongst Arctic charr from Loch Rannoch, Scotland. J Fish Biol 52:1259–1271

    Article  Google Scholar 

  • Adams CE, Woltering C, Alexander G (2003) Epigenetic regulation of trophic morphology through feeding behaviour in Arctic charr, Salvelinus alpinus. J Fish Biol 78:43–49

    Google Scholar 

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71:5–16

    Article  Google Scholar 

  • Albertson RC, Streelman JT, Kocher TD, Yelick PC (2005) Integration and evolution of the cichlid mandible: The molecular basis of alternate feeding strategies. PNAS 102:16287–16292

    Article  PubMed  CAS  Google Scholar 

  • Alexander GD, Adams CE (2004) Exposure to a common environments erodes between-strain trophic morphology differences in Arctic charr. J Fish Biol 64:254–258

    Google Scholar 

  • Amundsen P-A, Gabler H-M, Staldvik FJ (1996) A new approach to graphical analysis of feeding strategy from stomach contents data–modification of the Costello (1990) method. J Fish Biol 48:607–614

    Google Scholar 

  • Amundsen P-A, Knudsen R, Kuris AM, Kristoffersen R (2003) Seasonal and ontogenetic dynamics in trophic transmission of parasites. Oikos 102:285–293

    Article  Google Scholar 

  • Amundsen P-A, Knudsen R, Klemetsen A (2008) Seasonal and ontogenetic variation in resource use by two sympatric Arctic charr populations. Environ Biol Fish 83:45–55

    Article  Google Scholar 

  • Behm JE, Ives AR, Boughman JW (2010) Breakdown in postmating isolation and the collapse of a species pair through hybridization. Am Nat 175:11–26

    Article  PubMed  Google Scholar 

  • Blanchet S, Rey O, Berthier P, Lek S, Loot G (2009) Evidence of parasite-mediated disruptive selection on genetic diversity in a wild fish population. Mol Ecol 18:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Bolnick DI (2006) Multi-species outcomes in a common model of sympatric speciation. J Theor Biol 241:734–744

    PubMed  Google Scholar 

  • Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941

    Article  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialisation. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA (1984) Diphyllobothrium spp. and the Arctic charr: parasite acquisition and its effects on a lake resident population. In: Johnson L, Burns BI (eds) Biology of the Arctic charr. Proceedings of the International Symposium on a Arctic charr, Winnipeg, Mannitoba, May 1981. University of Manitoba Press, Winnipeg, pp 395–411

    Google Scholar 

  • Day T, McPhail JD (1996) The effect of behavioural and morphological plasticity on foraging efficiency in the threespine stickleback (Gasterosteus sp.). Oecologia 108:380–388

    Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357

    Article  PubMed  CAS  Google Scholar 

  • Doebeli M, Block HJ, Leimar O, Dieckmann U (2007) Multimodal pattern formation in phenotype distributions of sexual populations. Proc R Soc B 274:347–357

    Article  PubMed  Google Scholar 

  • Duckworth RA (2009) The role of behaviour in evolution: a search for mechanisms. Evol Ecol 23:513–531

    Article  Google Scholar 

  • Fraser D, Huntingford FA, Adams CE (2008) Foraging specialisms, prey size and life-history patterns: a test of predictions using sympatric polymorphic Arctic charr (Salvelinus alpinus). Ecol Freshw Fish 17:1–9

    Article  Google Scholar 

  • Funk DJ (2010) Does strong selection promote host specialisation and ecological speciation in insect herbivores? Evidence from Neochlamisus leaf beetles. Ecol Entomol 35:41–53

    Article  Google Scholar 

  • Garduño-Paz MV, Adams CE (2010) Discrete prey availability promotes foraging segregation and early divergence in Arctic charr, Salvelinus alpinus. Hydrobiologia 650:15–26

    Article  Google Scholar 

  • Garduño-Paz MV, Couderc S, Adams CE (2010) Habitat modulates phenotypic expression through developmental plasticity in the three-spined stickleback. Biol J Linn Soc 100:407–413

    Article  Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, NJ, p 432

    Google Scholar 

  • Head ML, Price EA, Boughman JW (2009) Body size differences do not arise from divergent mate preferences in a species pair of threespine stickleback. Biol Lett 5:517–520

    Article  PubMed  Google Scholar 

  • Hendry AP (2009) Ecological speciation! Or the lack thereof? Can J Fish Aquat Sci 66:1383–1398

    Article  Google Scholar 

  • Herrel A, Huyghe K, Vanhooydonck B, Backeljau T, Breugelmans K, Grbac I, Van Damme R, Irschick DJ (2008) Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proc Natl Acad Sci USA 105:4792–4795

    Article  PubMed  CAS  Google Scholar 

  • Kahilainen KK, Østbye K (2006) Morphological differentiation and resource polymorphism in three sympatric whitefish Coregonus lavaretus (L.) forms in a subarctic lake. J Fish Biol 68:63–79

    Article  CAS  Google Scholar 

  • Klemetsen A (2010) The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes. Freshw Rev 3:49–74

    Article  Google Scholar 

  • Klemetsen A, Amundsen P-A, Knudsen R, Hermansen B (1997) A profundal, winter-spawning morph of Arctic charr Salvelinus alpinus (L.) in lake Fjellfrøsvatn, northern Norway. Nord J Freshw Res 73:13–23

    Google Scholar 

  • Klemetsen A, Elliot JM, Knudsen R, Sørensen P (2002) Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. J Fish Biol 60:933–950

    Article  Google Scholar 

  • Klemetsen A, Knudsen R, Primicerio R, Amundsen P-A (2006) Divergent natural selection on the feeding behaviour of two sympatric Arctic charr (Salvelinus alpinus) morphs. Ecol Freshw Fish 15:350–355

    Article  Google Scholar 

  • Klingenberg CP (2008) MorphoJ. Faculty of Life Sciences, University of Manchester, UK. Available at http://www.flywings.org.uk/MorphoJ_page.htm

  • Knudsen R, Amundsen P-A, Klemetsen A (2003) Inter-and intra-morph patterns in helminth communities of sympatric whitefish morphs. J Fish Biol 62:847–859

    Article  Google Scholar 

  • Knudsen R, Curtis MA, Kristoffersen R (2004) Aggregation of helminths: the role of feeding behaviour of fish hosts. J Parasitol 90:1–7

    Article  PubMed  Google Scholar 

  • Knudsen R, Klemetsen A, Amundsen P-A, Hermansen B (2006) Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake. Proc R Soc B 273:2291–2298

    Article  PubMed  Google Scholar 

  • Knudsen R, Amundsen P-A, Primicerio R, Klemetsen A, Sørensen P (2007) Contrasting niche-based variation on trophic morphology within Arctic charr populations. Evol Ecol Res 9:1005–1021

    Google Scholar 

  • Knudsen R, Jobling M, Amundsen P-A, Klemetsen A (2008) Differences in pyloric caeca morphology between Arctic charr ecotypes: adaptation to trophic specialisation or parasite-induced phenotypic modifications? J Fish Biol 73:275–287

    Article  Google Scholar 

  • Knudsen R, Primicerio R, Amundsen P-A, Klemetsen A (2010) Temporal stability of individual feeding specialization may promote speciation. J Anim Ecol 79:161–168

    Article  PubMed  Google Scholar 

  • Kristjansson B, Skúlason S, Noakes DL (2002) Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L). J Fish Biol 76:247–257

    Google Scholar 

  • Lafferty KD, Thomas F, Skorping A (2000) Evolution of host phenotype manipulation by parasites and its consequences. Develop Anim Vet Sci 32:117–127

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Losos JB (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 175:623–639

    Article  PubMed  Google Scholar 

  • Maan ME, Van Rooijen AMC, Van Alphen JJM, Seehausen O (2008) Parasite-mediated sexual selection and species divergence in Lake Victoria cichlid fish. Biol J Linn Soc 94:53–60

    Article  Google Scholar 

  • MacColl ADC (2009) Parasite may contribute to ‘magic trait’ evolution in the adaptive radiation of three-spined sticklebacks, Gasterosteus aculeatus (Gasterosteiformes: Gasterosteidae). Biol J Linn Soc 96:425–433

    Article  Google Scholar 

  • Matthews B, Harmon LJ, M'Gonigle L, Marchinko KB, Schaschol H (2010) Sympatric and allopatric divergence of MHC genes in threespined stickleback. Plos One 5:e10948

    Article  PubMed  Google Scholar 

  • Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system for activation of bumblebee workers. Science 290:1166–1168

    Article  PubMed  CAS  Google Scholar 

  • Nosil P, Harmon JL, Seehausen O (2009) Ecological explanations for (incomplete) speciation. Trends Ecol Evol 24:145–146

    Article  PubMed  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. Plos One 5:e9672

    Article  PubMed  Google Scholar 

  • Perga ME, Gerdeaux D (2005) ‘Are fish what they eat’ all year round? Oecologia 144:598–606

    Article  PubMed  CAS  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rodd EC, Cruickshank T, Schlicthing CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  PubMed  Google Scholar 

  • Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Func Ecol 13:225–231

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ravigne V, Dieckmann U, Olivieri I (2009) Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am Nat 174:E141–E169

    Article  PubMed  Google Scholar 

  • Robinson BW, Parsons KJ (2002) Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Can J Fish Aquat Sci 59:1819–1833

    Article  Google Scholar 

  • Roger SM, Bernatchez L (2007) The genetic architecture of ecological speciation and the association with signatures of selection in natural lake whitefish (Coregonus sp. Salmonidae) species pairs. Mol Biol Evol 24:1423–1438

    Article  Google Scholar 

  • Rohlf FJ (2006) TPS Dig version 2.10. Deptartment of Ecology and Evolution, State University of New York at Stony Brook. Available at http://life.bio.sunysb.edu/morph

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Article  Google Scholar 

  • Rohlf FJ, Slice DE (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Rueffler C, Van Dooren TJM, Metz AJ (2007) The interplay between behaviour and morphology in the evolutionary dynamics of resource specialisation. Am Nat 169:E34–E52

    Article  PubMed  Google Scholar 

  • Sandlund OT, Gunnarsson K, Jonasson PM, Jonsson B, Lindem T, Magnusson KP, Malmquist HJ, Sigurjonsdottir H, Skúlason S, Snorrason SS (1992) The Arctic charr Salvelinus alpinus in Thingvallavatn. Oikos 64:305–335

    Article  Google Scholar 

  • Sargeant BL (2007) Individual foraging specialization: niche width versus niche overlap. Oikos 116:1431–1437

    Article  Google Scholar 

  • Schluter D (1996) Ecological speciation in postglacial fishes. Phil Trans R Soc Lond B 351:807–814

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, UK

    Google Scholar 

  • Schluter D (2001) The ecology and origin of species. Trends Ecol Evol 16:372–380

    Article  PubMed  Google Scholar 

  • Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Natl Acad Sci U S A 106:9955–9962

    Article  PubMed  CAS  Google Scholar 

  • Skarstein F, Folstad I (1996) Sexual dicromatism and the immunocompetence handicap: an observational approach using Arctic charr. Oikos 76:359–367

    Article  Google Scholar 

  • Skúlason S, Smith TB (1995) Resource polymorphism in vertebrates. Trends Ecol Evol 10:366–370

    Article  PubMed  Google Scholar 

  • Skúlason S, Snorrason SS, Jonsson B (1999) Sympatric morphs, populations and speciation in freshwater fish with emphasis on Arctic charr. In: Magurran AE, May RM (eds) Evolution of biological diversity. Oxford University Press, Oxford, pp 70–92

    Google Scholar 

  • Snorrason SS, Skúlason S, Jonsson B, Malmquist HJ, Jónasson PM, Sandlund OT, Lindem T (1994) Trophic specialization in Arctic charr Salvelinus alpinus (Pisces; Salmonidae): morphological divergence and ontogenetic niche shifts. Biol J Linn Soc 52:1–18

    Article  Google Scholar 

  • Snowberg LK, Bolnick DI (2008) Assortative mating by diet in a phenotypically unimodal but ecological variable population of stickleback. Am Nat 172:733–739

    Article  PubMed  Google Scholar 

  • Stelkens RB, Seehausen O (2009) Phenotypic divergence but not genetic distance predicts assortative mating among species of a cichlid fish radiation. J Evol Biol 22:1679–1694

    Article  PubMed  CAS  Google Scholar 

  • Tripathi N, Hoffmann M, Willing E-M, Lanz C, Weigel D, Dreyer C (2009) Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation. Proc R Soc B 276:2195–2208

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Ann Rev Ecol Syst 20:249–278

    Article  Google Scholar 

  • West-Eberhardt MJ (2005) Developmental plasticity and the origins of species differences. Proc Natl Acad Sci U S A 102:6543–6549

    Article  Google Scholar 

  • Westgaard JI, Klemetsen A, Knudsen R (2004) Genetic differences between two sympatric morphs of Arctic charr Salvelinus alpinus (L.) confirmed by microsatellite DNA. J Fish Biol 65:1185–1191

    Article  CAS  Google Scholar 

  • Woo KJ, Elliot KH, Davidson M, Gaston AJ, Davoren GK (2008) Individual specialization in diet by a generalistic marine predator reflects specialisation in foraging behaviour. J Anim Ecol 77:1082–1091

    Article  PubMed  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists: a primer. Elsevier, New York

    Google Scholar 

Download references

Acknowledgments

We thank Laina Dalsbø, Jan Evjen and Pål Sørensen for field and laboratory assistance, Raul Primicerio for statistical advice and Jennifer Dodd for grammar checking of the manuscript. We also thank two anonymous referees for their constructive criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Knudsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, R., Siwertsson, A., Adams, C.E. et al. Temporal stability of niche use exposes sympatric Arctic charr to alternative selection pressures. Evol Ecol 25, 589–604 (2011). https://doi.org/10.1007/s10682-010-9451-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-010-9451-9

Keywords

Navigation